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Abstract

Fractures that develop in faulted carbonate strata, especially faults of less than 5 m offset, are problematic for reservoir
characterization due to detection difficulty in the subsurface. This study documents an outcrop example of fracture development and
dissolution collapse along faults with minor offset. The outcrop exposure along the Lower Pecos River is unique in many ways, but
most striking is that carbonate strata containing faults are continuously exposed for more than 60 miles. This provides an opportunity
to study progressive fracture development from minor, mechanically-bound fractures culminating in brecciated faults and dissolution
collapse zones.

Lewis Canyon lies along the Lower Pecos River Canyon exposing three upper Albian (Cretaceous) high frequency sequences. A
single high frequency sequence consists of transgressive systems tract (TST) dominated by mud-rich facies containing low-relief
chondrodontid clam mounds capped by radiolitid rudist rudstones and bafflestones. TST bed thickness is variable ranging from 15 cm
to 2 m within the mounds. Highstand systems tract (HST) facies consist of accumulated lower shoreface grainstones that are 10-15 m
in thickness. Variability in thickness and facies types creates a heterogeneous architecture with higher fracture intensity in the thin-
bedded TST compared to the grainstones of the HST. This relationship is pervasive in outer zones greater than 100 m from exposed
faults. Fracture intensity increases as proximity to the fault increases up to 2 meters where significant brecciation is common.

Faulting along the outcrop area is a result of Laramide compressional tectonics that created compressional folds in northern Mexico.
Folding is not observed along the Pecos River Canyon. Rather, Laramide reactivation of Ouachitan-age reverse faults creates oblique
slip on the preexisting basement faults and secondary faults associated with oblique slip. Scale of outcrop exposure and minor fault
offset, make this a great locality to improve understanding of the interaction of stratigraphy, fracture, and faulting at a scale that is
most problematic to reservoir characterization.
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Sub-Seismic Detection of a Fault Zone
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e Fault zones in outcrop have limited vertical offset which
allows for lateral correlation of stratigraphic units over
ten’s of miles.




Reservoir Characterization Significance

e Fractures that develop by reactivation of pre-
existing tectonic elements can be significant, yet
in this example remain undetectable by most

seismic surveys (and even geologists in the
field).

e These undetected fractures represent reservoir
heterogeneities that may result in anomalous
permeability corridors or thief zones,
complicating enhanced recovery efforts.




Overview

Review the stratigraphic and tectonic framework of
the Lower Pecos River and Devil’s River Uplift

Revisit the oblique-slip model for secondary fractures

lllustrate quantified fault damage zones to highlight
the interplay of stratigraphy and structure

Describe karst collapse related to intersection fault
elements
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High-Frequency Sequences of the Late Albian

Kerans (2002)
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Sequence Stratigraphic Framework

High-frequency cycle sets

Bioherms

o -

Biostromes

\:“‘ S EATET L et e
o PRI S T e T TR




Stratigraphic Framework — Previous Work

Reservoir-Scale Cycle Architecture, Albian 19 HFS, Lewis Canyon Area,
Pecos River Canyon, Strike Panel
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From Kerans and others (1996, 2002)
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Tectonic Framework
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Tectonic Framework

~ Paleozoic Ouachita ./
~ Compression




,p s

e X
A ; p
) X
. %‘%\ \
Modified from Ewing, 1995 ¥ o '
N
X

!
L )
0 20 40 60 80 ' { [/ J 7
Miles e R\ l'- / | |4
O EE— —— \ ./ ]

X \ \a\
iEssion




Tectonic Framework
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Subsurface Structures (Ellenburger level)

Devil'Shores

Reough Canyon
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Laramide Reactivation of Paleozoic Structures

Lewis-Harkell-Zixto Fault System
(This study)
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Secondary Structures of Oblique Compression

Wilcox, Harding and Seely (1973) Woodcock and Schubert (1994)




Fracture Interpretation on Aerial Photo




Fault Damage Zones

oblique looking north




Fault Damage Zones in Outcrop
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Fracture IntenS|ty Zonatlon
eBackground (FSI <1)
eFault Halo (FSI =1 — 10)

eFault Core (FSI > 10)
Note: FSI = unit thickness / fracture spacing




Background Fracture Intensity

T FSI<1




Fault-Related Fracture Halo




Fault Damage Zone Core
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Lateral offset mapping in absence of slip lineations

Offset: 40 m lateral

0.25 m vertical
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Fault Damage Zone: Variable Facies Response
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Fault Damage by Facies

C: caprinid debris RS
B: skeletal GDP
—— A algal lam. MDP




N40°E Fault — Fault Gouge

Fault “gouge”
confined within
transgressive
systems tracts (TST)
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Variable Fracture Halo

Note: FSI = unit thickness / fracture spacing

Fracture halos vary in extent:
=  Within TST, limited to +/- 30 m of fault
core

=  Within HST grainstone, limited to +/- 75 m
of fault core

Fracture Intensity Zonation
eBackground (FSI <1)
eFault Halo (FSI =1 - 10)
...~ *Fault Core (FSI > 10)
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Intersecting Fractures and Karst Collapse
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Mapped karst collapse associated
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Intersecting Fractures and Collapse
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Intersecting Fractures and Collapse




Intersecting Fractures and Collapse
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Strata-bound fractures




Intersecting Fractures and Karst Collapse
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Key Points

Appreciate the role of pre-existing structures on later
deformation.

Small, oblique-slip faults can create significant,
reservoir-scale fracture heterogeneity that remains
below most seismic resolution.

The interplay of stratigraphy and structure are
important and demonstrate that rocks break
differently based on facies, thickness and lithology.

Intersecting fracture zones have a high propensity for
post-deformation alteration, i.e., karst dissolution.
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