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Abstract

Analysis of more than 900 wireline logs indicates that the Middle Devonian Marcellus Shale comprises two third-order depositional sequences,
MSS1 and MSS2, in ascending order. Thickness trends of the sequences reflect the interplay of temporal and spatial variations in
accommodation space, the influence of recurrent basement structures, eustatic fluctuations, and proximity to Middle Devonian clastic sources.
Thickening of both sequences toward the eastern region of the basin preserves a record of greater accommodation space and proximity to clastic
sources at this early stage of the Acadian Orogeny. Moreover, organic-lean late MSS2 highstand systems tract deposits prograded to the west.
Local variations in the thickness of MSS1 and MSS2 reflect the reactivation of extensional basement structures, including the Rome Trough,
most evident in thickness trends of MSS1 highstand systems tract deposits. Lithostratigraphic units and depositional sequences of the Marcellus
Shale reveal variable degrees of erosion in western New York and northwestern Pennsylvania, a consequence of intermittent vertical
displacement of crustal blocks bounded by both Eocambrian extensional structures and northwest-striking cross-structural discontinuities,
including the Tyrone - Mt. Union, Lawrenceville-Attica, Home-Gallitzen, and Pittsburgh-Washington faults. Episodes of block movement
induced by Acadian plate convergence gave rise to northeast-southwest-trending regions of starved sedimentation and/or erosion bounded by
cross-structural discontinuities. Block movement appears to have initiated in late Early Devonian time, resulting first in local erosion of the
Oriskany Sandstone in northwest Pennsylvania. Similarly, depositional and erosional patterns of the Marcellus Shale and the overlying
organic-rich Levanna Member of the Skaneateles Formation in New York and western Pennsylvania were controlled by block movement.
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Analysis of more than 900 wireline logs indicates that the Middle Devonian Marcellus Shale comprises two third order depositional sequences, ‘. . ,é' 1‘,‘\; Jﬁ m—zzg:;; =" 7 [/ VA e
MSS1 and MSS2, in ascending order. Thickness trends of the sequences reflect the interplay of temporal and spatial variations in accommodation : — — — ' CHERRY VALLEY ISOPACH -

space, the influence of recurrent basement structures, eustatic fluctuations, and proximity to Middle Devonian clastic sources. Thickening of both

sequences toward the eastern region of the basin preserves a record of greater accommodation space and proximity to clastic sources at this early LITHOSTRATI GRAPHY The Union Springs Member is especially thick in northeastern Pennsylvania where | | The Cherry Valley Member Heredscs from less than ].O ﬁ_thmk In western New York_
stage of the Acadian Orogeny. Moreover, organic-lean late MSS2 highstand systems tract deposits prograded to the west. Local variations in the it exceeds 160 ft. Particularly intriguing, though, is the local absence of this unit and northwestern Pennsylvania to more than 140 ft thick m.no.rtllleaste'm Pennsylvania
thickness of MSS1 and MSS2 reflect the reactivation of extensional basement structures, including the Rome Trough, most evident in thickness : . : — . along a northeast-southwest-trending axis in western New York into northwestern | | and southeastern New York, as well as northeastern West Virginia. It is noteworthy
trends of MSS1 highstand systems tract deposits. Lithostratigraphic units and depositional sequences of the Marcellus Shale reveal variable L i SEGHS lllho§trat1graphy_m line vf”th. L emPloyed oy Rlcka-rd (1984, 1989) and Pennsylvania. that the Cherry Valley is absent along a r.10rthe.ast.-southv\.fest-trendmg region Of. western
degrees of erosion in western New York and northwestern Pennsylvania, a consequence of intermittent vertical displacement of crustal blocks one that lends itself to subsurface correlation of wirsline log signatures. Specifically, we define New York and northwestern Pennsylvania, coincident with that area of the basin from

our basal unit of the Marcellus Formation as the Union Springs Member, a term recognized by the
United States Geological Survey Geologic Name Lexicon. The Union Springs Member of this
study, which encompasses the Bakoven Member of Ver Straeten and Brett (2006), is overlain by the

which the Union Springs Member is thin or absent. Locally, the Cherry Valley
Member overlies the Onondaga Limestone, the intervening Union Springs Member
~ absent due to erosion or nondeposition.

bounded by both Eocambrian extensional structures and northwest-striking cross-structural discontinuities, including the Tyrone — Mt. Union,
Lawrenceville — Attica, Home — Gallitzen, and Pittsburgh — Washington faults. Episodes of block movement induced by Acadian plate
convergence gave rise to northeast-southwest-trending regions of starved sedimentation and /or erosion bounded by cross-structural discontinuities.

Cherry Valley Member. Our Cherry Valley Member, which comprises variable amounts of
interlayered carbonate, shale, and sandstone, correlates with the Stony Hollow Member of the
Union Springs Formation and the Hurley and Cherry Valley members of the Oatka Creek and Mt.
Marion formations of Ver Straeten and Brett (2006). Finally, we employ the name Oatka Creek
Member, also recognized by Geologic Name Lexicon, for the succession of black and gray shale
and lesser siltstone and limestone that underlies the Stafford and Mottville members of the
Skaneateles Formation.

Block movement appears to have initiated in late Early Devonian time resulting first in local erosion of the Oriskany Sandstone in northwest
Pennsylvania. Similarly, depositional and erosional patterns of the Marcellus Shale and the overlying organic-rich Levanna Member of the
Skaneateles Formation in New York and western Pennsylvania were controlled by block movement.

The Oatka Creek Member thickens to the east, most rapidly along a north-south line east
of the meridian that defines the western edge of Broome County, New York, and the

{ western boundaries of Susquehanna and Wyoming counties, Pennsylvania. It exceeds
550 ft thick in eastern Wayne County, Pennsylvania, into Sullivan County, New York.
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Results reported on in this paper are based on our analysis of more than 900 wireline logs from the Appalachian Basin of Pennsylvania, New York,
northern West Virginia, eastern Ohio, and western Maryland (Figure). We focus on the Appalachian Plateau region of the basin for two reasons: the
greater density of available wireline logs and fewer structural complications. Specific points addressed in this study include (1) the distribution and
thickness trends of the two black shale members of the Marcellus Formation, (2) the distribution and thickness of the intervening limestone, an interval
that could be critical to stimulation and production considerations, and (3) the stratigraphy and distribution of the organic-rich Levanna Member of the
Skaneateles Formation, a unit that has been confused for the Marcellus Formation.
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The Oatka Creek Member thins to less than 30 ft along a northeast-southwest-oriented
axis in western New York, extending into Pennsylvania . This area is displaced to the
east of the similarly oriented region of the basin from which the Union Springs and
Cherry Valley members are absent.
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As important as the above points are, however, the more significant contribution of this paper is a sequence stratigraphic framework of the Marcellus
Formation based on publicly available wireline logs. Partington et al. (1993) and Emery and Myers (1996), among others, have demonstrated the utility
of some of the more common wireline log suites to the interpretation of sedimentary successions in terms of such sequence stratigraphic elements as
sequence boundaries, systems tracts, condensed sections, and maximum flooding surfaces. Such an approach serves as a means by which basin fill can Tully limestone
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Thinning of the Oatka Creek Member is
restricted to the organic-lean shale
interval: i.e., there is no concomitant
thinning of the radioactive, low

density basal interval of the Oatka
Creek across this structure. Indeed. the
organic-rich facies of the Oatka Creek

Member thickens across the region
Interpretive fill cross-section of gamma-ray values. over which the unit thins.

Note onlapping of organic-lean deposits on both sides
of the central region of thinning. GR (API)
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be organized into unconformity (or equivalent conformable surface) bounded packages of strata that provide a framework for predictive reservoir _
assessment and correlation into regions of minimal or poor data control. Thickness trends of lithostratigraphic units and the sequence stratigraphy of the = 2
Marcellus Formation reveal a basin that was more tectonically active than heretofore realized. Reactivated extensional basement structures, including =
Eocambrian faults associated with the Rome Trough, and northwest-striking basement faults (i.e., cross-strike structural discontinuities of Wheeler, |
1980), appear to have controlled sedimentation patterns of at least the late Early through early Middle Devonian succession, including the Marcellus il Onondaga limestone
Formation, in western New York and northwest Pennsylvania. 200 m
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*in press - American Association of Petroleum Geologists Bulletin Gamma-ray log showing the Marcellus - Levanna
Mbr. (Skaneateles Fm.) interval.
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A Cross-Sartlon & gamma-ray peak/bulk density minimum within the organic-rich Levanna Relatively rapid thinning of the organic-rich Levanna to the east is suggestive of down-to-west
Member. It is noteworthy that the SKS maximum flooding surface in i displacement along the Lawrenceville-Attica fault creating a black shale depocenter. The
central-western New York is only ~ 20 ft above the upper maximum Canada { STy western limit of the Levanna is more gradual. The thicker region of the Levanna (20 ft
regressive surface of T-R sequence MSS2, whereas farther to the west, the 0l ¢ isopach) terminates close to the Tyrone-Mt. Union CSD. However, the effects of this fault on
SKS maximum flooding surface is ~ 60 ft above the base of SKS. Similarly, basin morphology appear not to have been great enough to preclude accumulation of
the SKS maximum flooding surface in northwestern Pennsylvania is only _ NY carbonaceous sediment well to the southwest of the Tyrone-Mt. Union CSD. The
~ 8 ft above the top of MSS2. However, in western New York, the same Lake Erie southwestern limit of Levanna sedimentation may have been influenced by down-to-east
surfaces are separated by ~ 35 ft. These relationships reflect the onlapping of -{displacement on the Pittsburgh-Washington CSD. Progressive subsidence of the crustal block
SKS transgressive systems tract deposits to the west and north. CAl defined by the Lawrenceville-Attica and Tyrone-Mt. Union CSDs in tandem with rising base
level is indicated by westward and northward onlapping of the most organic-rich facies of the
Levanna Member.
THE ROLE OF B ASEMENT STRUCTURES ON M ARCELLUS The Middle and Upper Devonian succession of the Appalachian Basin records the cratonward advance of the Catskill Delta complex in
response to the Acadian oblique collision of the Avalonia microplate and Laurentia (Ettensohn, 1987). Rapid eastward thickening of MSS1 - | O \ PA
and MSS2 toward the Acadian fold and thrust belt is characteristic of foreland basin deposits (DeCelles and Giles, 1996). ' ' 1
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