Inhibition of Autogenic Dynamics in Alluvial Fans: Field Examples from the Tertiary of Spain and Implications for Process Recognition in Fan Successions*

Dario Ventra

Search and Discovery Article #50333 (2010)
Posted October 18, 2010

* Adapted from an oral presentation at AAPG Annual Convention and Exhibition, New Orleans, Louisiana, USA, April 11-14, 2010

Faculty of Geosciences, University of Utrecht, Utrecht, Netherlands. (d.ventra@geo.uu.nl)

Abstract

Alluvial fans are depositional systems with a relatively simple organization, due to close physical coupling between a sediment source and an adjacent transfer/accumulation area.

Nonetheless, general models of fan evolution and stratigraphy are still inadequate, due to the very high sensitivity (and often case-specific responses) of such systems to allogenic controls.

Autogenic processes complicate this picture, being an intrinsic component of alluvial fan development. A distinction is here made between “lateral autogenic dynamics”, tied to local topographic constraints on sediment distribution, and “vertical autogenic dynamics”, related to base-level /sediment-transport feedbacks in the building-up and out of clastic wedges.

The role of autogenic factors has been only recently highlighted by numerical and physical modelling, but remains unexplored in field-based studies, because of inherent difficulties in detecting ultimate causal relationships in the architecture of coarse-clastic successions at basin margins.

An example is presented here from the margin of the Tertiary Teruel Basin (central Spain), in which excellent outcrops consent to examine the stratigraphic architecture of a Miocene alluvial fan that evolved during a protracted phase of endorheic drainage and high sediment supply. This combination of factors promoted a regime of forced aggradation in the whole clastic dispersal system, coupled
with particularly high sedimentation rates for a continental setting, as demonstrated by sedimentological and stratigraphic evidence in mudflat to ephemeral lacustrine deposits of distal settings.

Fan outcrops are characterized by a perfectly conformable architecture of stacked clastic sheets with variable character through time, due to interacting catchment, tectonic, and climatic controls, but with no evidence of internal unconformities, preserved feeder channels or fan segmentation. This points to an essentially continuous regime of aggradation, with recognizable “lateral autogenic” processes, but complete inhibition of “vertical autogenic” dynamics.

Alluvial fans are important gateways for sediment distribution basinwards. Geological factors that dampen large-scale autogenic processes in fan construction, and related field-criteria for their recognition in ancient deposits, are discussed also in relation to examples from the Ebro Basin and in terms of their significance for the analysis of sediment dispersal in continental settings.

Selected References

INHIBITION OF AUTOGENIC DYNAMICS IN ALLUVIAL FANS

FIELD EXAMPLES FROM THE TERTIARY OF SPAIN AND IMPLICATIONS FOR PROCESS RECOGNITION IN FAN SUCCESSIONS

DARIO VENTRA

Faculty of Geosciences, University of Utrecht (The Netherlands)
WE MIGHT CONSIDER ALLUVIAL FANS AS THE MOST BASIC DEPOSITIONAL SYSTEM: SOURCE AREA + DEPOSITIONAL RELIEF...

DISTAL ALLUVIAL SURFACE (playa, mudflat, floodplain, eolian system...........)
...BUT THIS HAS LONG BEEN RECOGNIZED NOT TO BE QUITE THE CASE!!
• ALLUVIAL FAN RESEARCH...

• AND THE POSSIBLY OVERLOOKED ROLE OF AUTOGENIC PROCESSES IN FIELD STUDIES

• TERUEL BASIN: EXAMPLES AND RATIONALE

• EBRO BASIN: ANALOGUES

• CONCLUSIONS
SHOULD WE BE LOOKING AT TECTONICS??

ALLUVIAL FAN SEQUENCE AND MEGASEQUENCE MODELS: with examples from Westphalian D — Stephanian B coalfields, Northern Spain

ALAN P. HEWARD

Fan Deltas: Sedimentology and Tectonic Settings
Eds. W. Nemec and R.J. Steel
© 1988 Blackie and Son

Coarsening-upward and skewed fan bodies: symptoms of strike-slip and transfer fault movement in sedimentary basins

R.J. STEEL
SHOULD WE BE LOOKING AT TECTONICS??

Alluvial fans and their tectonic controls

C. P. NORTH, S. P. TODD & J. P. TURNER
Department of Geology, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK

Laramide Thrust-Generated Alluvial-Fan Sedimentation, Sphinx Conglomerate, Southwestern Montana

OR SHOULD WE EMPHASISE CLIMATE......?

Quaternary evolution of Cedar Creek Alluvial Fan, Montana

1986 Indiana University Research Seminar, Indiana University Geologic Field Station, Cardwell, MT 59721, USA

Chapter 24

The Role of Climatic Change in Alluvial Fan Development

Ronald I. Dorn

Climatic versus tectonic controls of fan sequences: lessons from the Dead Sea, Israel

LYNNE E. FROSTICK¹ & IAN REID²
¹Royal Holloway and Bedford New College, University of London, Egham TW20 0EX, UK
²Birkbeck College, University of London, Malet St, London WC1E 7HX, UK
(…OR HOW ABOUT JUST GIVE UP…..)

Chapter 24

8 Climatic Hypotheses of Alluvial-fan Evolution in Death Valley Are Not Testable

Ronald I. Dorn
Department of Geography, Arizona State University

1Kahns School and College of Liberal Arts, University of New Mexico, Albuquerque, NM
2Birkbeck College, University of London, Malet St, London WC1E 7HX, UK
LECCE (1990): STILL A VALUABLE SUMMARY OF THE CURRENT STATE OF FAN AFFAIRS!

CHAPTER 1

The Alluvial Fan Problem

Scott A. Lecce
Arizona State University, Tempe
• ALLUVIAL FAN RESEARCH…
• …AND THE POSSIBLY OVERLOOKED ROLE OF AUTOGENIC PROCESSES IN FIELD STUDIES
• TERUEL BASIN: EXAMPLES AND RATIONALE
 • EBRO BASIN: ANALOGUES
 • CONCLUSIONS
PROBABLY THE MOST OVERLOOKED COMPLICATION IN FIELD-BASED STUDIES

AUTOGENIC FAN BEHAVIOR

ALLUVIAL FANS OF THE CUCAMONGA DISTRICT, SOUTHERN CALIFORNIA

ROLLIN ECKIS
Pomona College, Claremont, California

THE FIRST… ECKIS (1928, *Journal of Geology*)

Sedimentology (1991) **38**, 567–590

Controls on synorogenic alluvial-fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana

P. G. DeCELLES, M. B. GRAY, K. D. RIDGWAY, R. B. COLE, D. A. PIVNIK*, N. PEQUERA and P. SRIVASTAVA
Department of Geological Sciences, University of Rochester, Rochester, NY 14627, USA

...AND THE BEST… DeCELLES et al. (1991, *Sedimentology*)
RECENT EXPERIMENTAL EVIDENCE SHOWS SUCH SIMPLE DEPOSITIONAL SYSTEMS ARE CHARACTERIZED BY INTRINSIC AUTOGENIC CYCLES OF SELF-INCISION AND AGGRADATION...

...IN ALLUVIAL FANS...

M. VAN DIJK (EUROTANK LABS, UTRECHT UNIVERSITY) SEDIMENTOLOGY, 2009 and in press
W. KIM (EXPERIMENTAL EARTH-SCAPE LABS, UNIVERSITY OF MINNESOTA)
JOURNAL OF GEOLOGY, 2008

... AND IN FAN DELTAS
TWO BASIC TYPES OF AUTOGENIC DYNAMICS CAN BE IDENTIFIED IN ALLUVIAL FANS

1. “HORIZONTAL” DISTRIBUTARY- DEPOSITIONAL BEHAVIOR

TOPOGRAPHIC COMPENSATION OF MASS-FLOW AND SHEETFLOOD TRANSPORT PATHWAYS…
DISTRIBUTARY CHANNEL AVULSION…
TWO BASIC TYPES OF AUTOGENIC DYNAMICS CAN BE IDENTIFIED IN ALLUVIAL FANS

1. "HORIZONTAL" DISTRIBUTARY- DEPOSITIONAL BEHAVIOR

TOPOGRAPHIC COMPENSATION OF MASS-FLOW AND SHEETFLOOD TRANSPORT PATHWAYS...
DISTRIBUTARY CHANNEL AVULSION...
TWO BASIC TYPES OF AUTOGENIC DYNAMICS CAN BE IDENTIFIED IN ALLUVIAL FANS

1. “HORIZONTAL” DISTRIBUTARY- DEPOSITIONAL BEHAVIOR

TOPOGRAPHIC COMPENSATION OF MASS-FLOW AND SHEETFLOOD TRANSPORT PATHWAYS...
DISTRIBUTARY CHANNEL AVULSION...
TWO BASIC TYPES OF AUTOGENIC DYNAMICS CAN BE IDENTIFIED IN ALLUVIAL FANS

2. “VERTICAL” AGGRADATIONAL- INCISIONAL BEHAVIOR

FORMATION AND / OR EXTENSION OF AN INCISED FEEDER CHANNEL...

FEEDER-CHANNEL BACKFILLING AND PREVALENT UNCONFINED DEPOSITION OVER FAN SURFACE...
TWO BASIC TYPES OF AUTOGENIC DYNAMICS CAN BE IDENTIFIED IN ALLUVIAL FANS

2. “VERTICAL” AGGRADATIONAL- INCISIONAL BEHAVIOR

FORMATION AND / OR EXTENSION OF AN INCISED FEEDER CHANNEL…

FEEDER-CHANNEL BACKFILLING AND PREVALENT UNCONFINED DEPOSITION OVER FAN SURFACE…
TWO BASIC TYPES OF AUTOGENIC DYNAMICS CAN BE IDENTIFIED IN ALLUVIAL FANS

2. “VERTICAL” AGGRADATIONAL- INCISIONAL BEHAVIOR

FORMATION AND / OR EXTENSION OF AN INCISED FEEDER CHANNEL...

FEEDER-CHANNEL BACKFILLING AND PREVALENT UNCONFINED DEPOSITION OVER FAN SURFACE...
• ALLUVIAL FAN RESEARCH…
• …AND THE POSSIBLY OVERLOOKED ROLE OF AUTOGENIC PROCESSES IN FIELD STUDIES
• TERUEL BASIN: EXAMPLES AND RATIONALE
• EBRO BASIN: ANALOGUES
• CONCLUSIONS
TERUEL BASIN

• SYSTEM OF THREE INTERLINKED, EN-ECHELON HALF GRABENS (EARLY-NEOGENE EXTENSION OVER THE IBERIAN RANGE)

• DEVELOPED IN A SEMIARID CLIMATIC CONTEXT OVER MOST OF ITS HISTORY

• INTERNALLY DRAINED UNTIL EARLY PLEISTOCENE
CLOSED BASIN FOR MOST OF ITS HISTORY IMPLIES:

• ESSENTIALLY COMPLETE PRESERVATION OF STRATIGRAPHIC COLUMN
 • FULLY AGGRADATIONAL ARCHITECTURE
 • LONG-TERM ELEVATED SEDIMENTATION RATES
BASINWIDE “LAYER-CAKE” STRATIGRAPHIC PATTERNS

OUTCROP DISTANCE
~ 14 Km
EXAMPLE: PRADO SECTION

~ 200m OF MUDFLAT AND EPHEMERAL LACUSTRINE SEDIMENTS

CHRONOSTRATIGRAPHICALLY COMPLETE, TUNED TO ASTRONOMICAL CYCLES

PRESERVES “SUBMILANKOVITCH” CLIMATE SIGNALS

AVERAGE SEDIMENTATION RATE: 1mm / dy

ABELS et al. (2009, JOURNAL OF SEDIMENTARY RESEARCH)
FACIES DISTRIBUTION IN THE MIDDLE SEGMENT OF THE BASIN PRESENTS A TYPICAL PATTERN FOR CONTINENTAL HALF-GRABENS
BASEMENT: TRIASSIC CONTINENTAL MUDSTONES, UNCONFORMABLY OVERLAIN BY MID-JURASSIC TO CRETACEOUS MARINE CARBONATES AND MARLSTONES
PROXIMAL OUTCROPS

NO EVIDENCE OF INCISION
REFERENCE CONCEPTUAL MODEL

BASE-LEVEL “BUFFERS AND BUTTRESSES”
(Holbrook et al., 2006, Journal of Sed. Research)

Upper Buffer Profile
Transport Capacity = Min
Sediment Influx = Max
Uplift Rate = Max

Lower Buffer Profile
Transport Capacity = Max
Sediment Influx = Min
Uplift Rate = Min

Buttress Rise
(Sea Level, Cataract, Lake Level, etc.)

Buffer Profile
Instantaneous Profile
Added Preservation Space
Original Preservation Space

RAISING BASE-LEVEL DOWNSTREAM (BUTTRESS) CONTINUOUSLY RAISES GRADED ALLUVIAL SURFACES (BUFFERS) UPSTREAM ALONG SYSTEM’S EXTENT
THE SCENARIO OF A STEADILY AGGRADING ALLUVIAL FAN:

TOPOGRAPHICALLY CLOSED BASINS PREVENT SIGNIFICANT SEDIMENT BYPASS AND PROMOTE GENERALIZED AGGRADATION…

…WHICH IN TURN FORCES MARGINAL CLASTIC SYSTEMS TO RESPOND IN THE SAME WAY!

BACKFILLING OF MARGINAL TOPOGRAPHY MIGHT FOLLOW IF CLASTIC SYSTEM’S LIFESPAN IS SUSTAINED

ADAPTED FROM NICHOLS, 2005
ONE MORE EXAMPLE FROM VILLEL, 10 Km TO THE SOUTH ALONG THE SAME BASIN MARGIN
• ALLUVIAL FAN RESEARCH…
• …AND THE POSSIBLY OVERLOOKED ROLE OF AUTOGENIC PROCESSES IN FIELD STUDIES
• TERUEL BASIN: EXAMPLES AND RATIONALE
 • EBRO BASIN: ANALOGUES
 • CONCLUSIONS
EBRO BASIN

ANALOG EXAMPLES, ON A LARGER SCALE, HAVE BEEN WORKED OUT BY G. NICHOLS ALONG THE NORTHERN MARGIN OF THE EBRO BASIN (NORTHERN SPAIN)

from LLOYD, NICHOLS & HIRST, 1998
JOURNAL OF SEDIMENTARY RESEARCH
PERFECTLY AGGRADATIONAL ARCHITECTURE OF CONFORMABLY TABULAR STRATASETS, WITHOUT INTERVENING LARGE-SCALE EROSIONAL SURFACES OR IN-SET ARCHITECTURES

ROLDAN FAN (PHOTOS BY G. NICHOLS)
• ALLUVIAL FAN RESEARCH…
• …AND THE POSSIBLY OVERLOOKED ROLE OF AUTOGENIC PROCESSES IN FIELD STUDIES
• TERUEL BASIN: EXAMPLES AND RATIONALE
 • EBRO BASIN: ANALOGUES
 • CONCLUSIONS
ANALOGUE-EXPERIMENTAL RESEARCH SUGGESTS THAT COMPLEX AUTOGENIC DYNAMICS IN ALLUVIAL FANS MIGHT BE FLYING WELL BELOW OUR SEDIMENTOLOGICAL RADAR, YET BE LEAVING SIGNATURES WE ARE NOT YET SURE HOW TO RECOGNIZE IN THE ROCK RECORD

THERE ARE BASINAL CONTEXTS IN WHICH WE CAN REASONABLY EXCLUDE A MAJOR ROLE FOR AUTOGENIC PROCESSES, AND THUS BETTER PINPOINT THE ROLE OF TECTONICS, CLIMATE AND CATCHMENT GEOLOGY

EXAMPLES FROM THE CONTINENTAL TERTIARY OF SPAIN POINT TO SUCH CONTEXTS TO BE CHARACTERIZED BY:

• **TOPOGRAPHICALLY CLOSED BASINS** WITH PERSISTENT ENDORHEIC DRAINAGE IN A TECTONICALLY ACTIVE SETTING

• RELATIVELY HIGH SEDIMENTATION RATES AND PRESERVATION POTENTIAL FOR DISTAL, BASINAL FACIES ASSOCIATIONS, **FORCING A CONTINUOUS RISE IN ALLUVIAL BASE-LEVEL**
THANKS TO:

GARY NICHOLS (Royal Holloway, University of London) for discussions and sightseeing guidance in the Ebro

NWO (National Science Foundation, The Netherlands) for research grants…

…and MIKE BLUM (Exxonmobil Upstream Research, Houston), for lively (and somewhat foodsome…) dinner discussions that ended up with a trip to New Orleans