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Abstract

Sedimentologic, stratigraphic and paleopedologic investigations of the Late Triassic Sonsela Member in the Petrified Forest National
Park (PFNP) reveal a cyclic succession of alluvial deposits and bounding paleosols. Sedimentologic data from eight measured sections
are used to characterize the spatial distribution of alluvial architectural elements along a continuous 1.2 km Sonsela outcrop.
Architectural elements include downstream accretion, lateral accretion, crevasse splay, and overbank deposits that indicate a mixed-
load fluvial system. Within the measured sections, paleosol profiles were repetitively described along the bounding discontinuity
surfaces that partition the stratigraphic succession into seven fining-upward meter-scale depositional cycles. Lithofacies and paleosols
were walked-out to establish distributions and variability within cycles. Cycles systematically stack in response to what was a longer-
period variation in accommodation. Cycles at the base of the succession are thick and dominated by extensive downstream-accretion
deposits, and associated bounding discontinuities have weak paleosol development. Cycles in the upper portion of the succession are
thinner and dominated by more discontinuous lateral accretion, crevasse splay and overbank deposits, and bounding discontinuities
have better developed, well-drained paleosols. The uppermost portion of the succession is characterized by very thin cycles with
discontinuous channel sandstones, and bounding paleosols that are well developed and poorly drained. Point counts of porosity within
channel facies and subsequent transform to permeability (based on grain size and sorting) provides a 2D depiction of the lateral
variability in reservoir quality as correlated to architectural element. Flow baffles between cycles coincide with paleosols owing to
their low permeability silty clay to clayey-silt texture. The reduction in both reservoir quality and continuity within the study interval
was produced by fluvial aggradation during an episode of long-term accommodation deceleration within a period of uniform climatic
conditions.
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Notes by Presenter: Fluvial heterogeneity is challenging to petroleum geologists. Fluvial reservoirs - account for over 20% of the world’s remaining
energy reserves (Keogh et al., 2007). Prediction is complicated by sensitive responses climate, sediment supply and dynamic equilibrium. We have

made advancements in understanding extrinsic controls on fluvial style. But, how do these processes interact? How can we use what we know to
predict reservoir facies?
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Notes by Presenter: WHY CHOSEN? Very well exposed, entirely terrestrial succession that was deposited during a time when terrestrial deposits
are the primary record for climate. Triassic record must rely primarily on the terrestrial record.
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Ordered nature suggests pore filling matrix is diagenetic.
Almost complete diagenetic loss of porosity.
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e Paleosol characteristics change little throughout the outcrop — suggesting a
period of relatively stable climate conditions.

e Sandstone compositions are mineralogically immature.

e Relationship of sandstone immaturity with change in fluvial style suggests that
tectonic pulses or phases are associated with fluvial style change.

e Best initial reservoir class sandstones consists of downstream and lateral
accretion and are found during the early transgression equivalent stage.

e Reservoir classes based on initial reservoir qulality correlate well to depositional
distributions. However, current reservoir quality has been completely destroyed
by diagenetic pore-plugging products.

e Cross-cutting relationships of diagenetic features suggests loss of porosity
occurred relatively early. Has implications on reservoir risk when exploring
mineralogically immature basins within this climatic regime.

Conclusions
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