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Abstract 
 

On the land-locked Adriatic shelf (Central Mediterranean), shore-parallel muddy clinoforms develop both during highstand and falling 
sea-level conditions, representing the dominant building blocks of a stack of 100-kyr depositional sequences. Within each sequence, 
these clinoforms are tens of meters thick and rest on regional downlap surfaces traceable over hundreds of km parallel to the modern 
coast. The analysis of the most recent clinoform deposited during modern (highstand) conditions shows that transport is along the 
strike of the clinoform and the thinning of the deposit through the bottomset reflects the energetic impact of bottom water flowing 
along the contour. Bottom currents induce lateral advection, hinder sediment transport basinward and form elongated clinoform bodies 
characterized by a distinctive shore-parallel offlap break (typically in 25-30 m water depth). The modern HST Adriatic clinoform has 
a volume of 180 km3

 

 with a depocenter within less than 20 km from the coast, and reaches its maximum thickness (35 m) down 
current with respect to the location of its deltaic entry points. Interestingly, these clinoforms register also very short-term supply 
fluctuations like those reflecting abrupt climate change and human impact on the catchment during the last 500 years (Little Ice Age). 

Borehole PRAD1.2 allowed to point out that the bulk of Pleistocene clinoforms within 100-kyr sequences record almost exclusively 
interglacial stages (Stages 5, 7 and 9, in particular) suggesting that shore-parallel advection is most efficient during sea-level 
highstands. As sea-level fall proceeds, the semi-enclosed Adriatic basin shrinks to about 1/8th of its HST extent and circulation 
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becomes sluggish allowing sediment deposition beyond the shelf edge: LST deposits onlap the upper slope, are rich in organic matter, 
and appear characterised by thin-bedded (cm-scale) turbidity-current deposits. Also in the case of these older deposits, two main 
factors determine the thinning of clinoforms through the bottomset. Beside the gradual decrease of sediment received basinward, a key 
control is the energy impact of the West Adriatic bottom current flowing along the contour, impinging the seafloor and limiting the 
basinward growth of the clinoforms. In this view, bottom currents induce lateral (shore parallel) rather than basinward transport of 
sediment with the formation of elongated clinoform bodies characterized by a shore-parallel strike of the foreset. 
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PRAD1-2 Borehole
185.5 m w.d.

high-resolution seismic database

- Adriatic Margin setting: interplay of sea level,
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- internal architecture of late Pleistocene sequences
based on ∂18O record of past ~ 400 ka from PRAD1-2
borehole (71 m long)

- sequence architecture and systems tracts partitioning

- facies partitioning (mud vs sand) within sequences:
depositional and preservation bias

- concluding remarks
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Asymmetric cyclicity:

- rapid interglacial warming (terminations) following glacial maxima 
- slow and unsteady cooling after rapid interglacial worming

- 20 ka cycle punctuating 100 ka cyclicity

- Clinoform pattern of progradational units

- Is the complexity of composite cyclicity recorded by progradational  
units and can it be resolved?



ES = correlative ES surface (sequence boundary)
IBE = Iceland Basin Excursion (188 ka BP) 
TI-IV = Terminations
S eq = sapropel equivalent

Piva et al., 2008, Geochem., Geophys., Geosyst.Piva et al., 2008, Geochem., Geophys., Geosyst.

- Internal architecture of Pleistocene
  sequences based on PRAD1-2 stratigraphy
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- LST units in 20-ka cycles?

- TST units in 20-ka cycles?



- Sequence architecture and systems tracts partitioning
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- Sequence architecture and systems tracts partitioning
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- TST units:
- thin “unresolved” parts of HST during minor sea
   level rises punctuating the overall 100 ka falls
- patchy depocentres during major terminations 
   (i.e. major sea level rise) following glacial maxima

Last Glacial Maximum LSTLast Glacial Maximum LST

- Glacial LST units:
- confined in the MAD during glacial maxima
- form FSST on the shelf during glacial-substages 

- Sand deposits form as:
                  - turbiditic layers in the MAD during glacial lowstand maxima
                  - sharp-based nearshore deposits on the shelf during sea level fall



- Facies partitioning (mud vs sand) within sequences
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- Facies partitioning (mud vs sand) within sequences

Western Adriatic shelf
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- preservation bias:

- preservation of sharp-based forced-regressive nearshore deposits
only at the end (glacial maxima) of the 100 ka sea level fall

Last Glacial Maximum LST

- depositional bias:

- sand deposits form as:

- turbiditic layers in the MAD during glacial lowstand maxima
- sharp-based nearshore deposits on the shelf during sea level fall
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- Changing sea level  during Quaternary climate-driven cycles alternatively
switched-off longshore currents and sediment transport, generating a distinct
signature in clinoform geometry 

- This signature in clinoform geometry has been used to unravel sequence
architecture resulting from composite 100 and 20 ka Milankovitch cyclicity

- Shelf stratigraphy is largely composed by interglacial muddy progradational
units made of thicker HST that alternate with thinner FSST that lack
coarser-grained sediment 

- Lowstand units during glacial intervals are confined to the slope and so are
coarser sandy deposits, with the exception of patchy, “transgressive sand ridge”
deposits that escape post-glacial transgressive erosion and reworking 

- Summary and concluding remarks

- The Adriatic is an example of a mud-dominated setting where progradation of
shelf units is accomplished by offshore mud transport and accumulation under
the control of longshore currents   

- In contrast with many pre-Quaternary settings, forced-regressions form
continuous-muddy rather than patchy-sandy shelf deposits



On many late Quaternary continental margins, the high-amplitude,
high-frequency and multiple climate-driven sea level cycles generate
sequence-stratigraphic patterns that are not accounted for in classical sequence 
stratigraphy

This is essentially because classical models of sequence stratigraphy:

- are largely based on ancient (pre-quaternary) settings;

- poorly consider the importance of supply fluctuations,
particularly in the along-strike direction (2-D models)

- conceive only the “accommodation space” in terms of “physical
limitation”, whereas oceanographic processes and supply dynamics 
may equally act as constraints relative to depositional geometry

- More general remarks

Thank you for attention




