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Abstract

The early Eocene fluvial succession in the Uinta basin displays distinct stratigraphic changes in channel-fill and lateral/vertical channel
amalgamation character. The channel fills alternate between “normal,” with dominantly trough-cross-stratified sandstones organized into
thalweg deposits and barforms with lateral, downcurrent and upcurrent accretion directions. Such “normal” channels alternate at different
scales with channel fills that are dominantly plane-parallel and climbing-ripple laminated, organized into erosionally based, thick,
downstream accreting packages, in many places bioturbated at their tops. Such channel fills indicate rapid local infilling and consequent
high avulsion rates. Avulsions are commonly linked to autogenic controls like local gradient or topographic variations. We link the
avulsion-rate variations to episodic changes into highly seasonal, ephemeral discharge and deposition with an initial erosional stage,
followed by high rates of deposition, and then by nondeposition, bioturbation, and paleosol formation. The great thickness of individual
accretion packages suggests that such channels were locally filled and forced to avulse during a single season. In some stratigraphic
intervals the degree of lateral and vertical channel amalgamation suggests development of megafans. Based on stable carbon isotope and
paleosol analyses, we link these high-frequency stratigraphic changes in fluvial deposition style to the PETM and the successive early
Eocene hyperthermals. We interpret the changing fluvial style to be controlled by intensification of the hydrological cycle during the
hyperthermals. Nevertheless, the specific distribution of channel fill styles and avulsion rates is controlled by local erosion and deposition
rates, and laterally the channel style changes due to these autogenic controls.
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"SUPER-GREENHOUSE" EARLY EOCENE CLIMATE:

Paleocene/Eocene Thermal Maximum (PETM) - ca 55.3-55.7 Ma
(Lourens et al., 2005)

Hyperthermals H1, H2, T1, I2 - ca 53.6, 53.5 & 53.3-53.2 Ma
(Cramer et al., 2003 Lourens et al., 2005)
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(A) modified from Bralower, et al., 2002, after Zachosetal.,1993,2001, (B) from Nicoloetal., 2007



QUESTIONS

What are the effects of climate change on river systems?

What are the controls on water discharge?
Deposition rates?

Channel type changes?

Channel avulsions?



UINTA BASIN, UTAH
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DATASET

Measured sections, mapping, walk-out of stratigraphic
intervals

Paleosol & continental trace fossil analyses

Bulk organic carbon isotope (3'3C,.) & C,. /N,



Sedimentary structures:

dominantly plane-parallel-laminated
sandstones

+convex-up low-angle bedforms
+climbing ripples
+structureless sandstones
+soft-clast conglomerates

+minor cross-stratification (5-10% of
observed volume)

Geometry:

multiple internal erosion surfaces

con\(ex—u? low-angle barforms with,
dominantly downstream accretion sets

in places bioturbation & paleosols at
accretion set boundaries



Plane-parallel lamination gradational




Sedimentary structures: Geometry:

dominantly gradational plane-parallel- - multiple internal erosion surfaces
laminated sandstones - convex-up low-angle barforms with,

- +convex-up low-angle bedforms dominanTllDy downstream accretion sets
+climbing ripples - in places bioturbation & paleosols at

. +structureless sandstones accretion set boundaries

+  +soft-clast conglomerates = HIGH DEPOSITION RATES

| pminor cross stratification (5-10% of ¢ EPISODIC DEPOSITION



"NORMAL" CHANNEL FILLS

Sedimentary structures: fﬁm ellri);\.’rer'nal erosion surfaces

+ dominantly cross-stratified |l3 thin_ lateral d A g
sandstones complex, thin, lateral, downstream an

- +plane-parallel-laminated sandstone upstream accretion sets

- +ripple-laminated sandstones
“normal”, dominantly cross-stratified channel fill
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dominantly plane-
parallel-laminated channel fillsg



"NORMAL" CHANNEL FILLS: Statgraphy Pedogeric _Geocheistry
more continuous deposition &
stable water & sediment discharge
- stable climate vs intensely
monsoonal?
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HIGH-DEPOSITION-RATE
CHANNEL FILLS 1

Units 1, 9, 13, 15:

Small channels = low water discharge

Encased in thick floodplain fines = high
fine-grained sediment supply

Paleosols: monsoonal climate
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HIGH-DEPOSITION-RATE
CHANNEL FILLS 2

Unl'rsZ 14, 16:

Large channels, erosional bases = high water
discharge

- Thick accretion sets = high sand supply

+  Bioturbation on accretion set boundaries =
episodic

*  Channels laterally amalgamated = higher
avulsion rates

» Paleosols: oxisols, but bioturbation indicates
wet conditions - more intense monsoonal
climate with distinct dry & wet periods;
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HIGH-DEPOSITION-RATE
CHANNEL FILLS 3

Units 6, 8, 12:

Same as HIGH-DEPOSTITION RATE
CHANNEL FILLS 3, but verticall
isolated = "pulses” of this style o
deposition
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HIGH-DEPOSITION-RATE
CHANNEL FILLS 4

Largest channels, 10's of m erosion at bases =
very high water discharge

Thickest accretion sets (up to 20 m) = very high
sand supply, very high deposition rates

Bioturbation & paleosol formation common on
accretion set boundaries = very episodic with
Ion% periods of non-deposition = long dry periods
with intense wet periods

Channels laterally & ver"ricall?/ extremely
amalgamated = very high avulsion rates

This package has deepest erosion surfaces &
highest aggradation rates

Fluvial megafan
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HIGH-DEPOSITION-RATE
CHANNEL FILLS 4

Largest channels, 10's of m erosion at bases =
very high water discharge

Thickest accretion sets (up to 20 m) = very high
sand supply, very high deposition rates

Bioturbation & paleosol formation common on
accretion set boundaries = very episodic with
Ion?1 periods of non-deposition = long dry periods
with intense wet periods
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Units (3), 7, 10, 12:

Sunnyside Delta Interval

*dominantly carbonate lake sediments
+ +siliciclastic mouth bars ’
+  +some fine siliciclastic lake deposits
- = low siliciclastic sediment supply i

Lower Mbr
Colton Tongue ﬁnrlmmte Marker Unit

Qutcrop of Carbonate Marker Unit, Lower Green River Formation, and Sunnyside Delta Interval, Bill Barrett Property, East of LG-4
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PALEOSOLS & TRACE FOSSILS

Poorly developed soils, dry soils, wet trace

assemblages; long dry periods with short wet -

intfense monsoon, high deposition rates

Supralittoral, we

Lake

Better developed soils, dry soils, wet horizontal
& shallow trace assemblages: higher water table,

less distinct wet and dry, less intense monsoclink
ake

Better developed soils, dry soils, wet trace
assemblages: distinct wet and dry monsoon, lower
deposition rates
Poorly developed soils, dry soils, wet trace
assemblages: long dry periods with short wet -
infense monsoon, high deposition rates
Well developed soils, dry soils, wet trace
assemblages: distinct wet and dry monsoon

Wet monsoon, well developed soils
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4 49 Ma

Intensified
seasonality

Extreme seasonality
with long-term aridity
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+ tectonic pulses?

NO! no unconformities,

no syn-tectonic conglomerates, in
contrast to North Horn Fm below
or Uinta Fm above

Early Eocene tectonics provided a
steady, long-term subsidence and
source area uplift
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+ autocyclic changes?

? Lateral changes,

system's buffering capacity, e.g.,
delay between warming and
monsoon intensity or hydrologic
cycle intensity increase;

delay in sediment production ?
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+ intra-PETM climate changes?

? Hyperthermals are more
complex ?
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CONCLUSIONS

Allogenic controls

-monsoon intensity, sediment production rate, water
discharge, erosion rate, deposition rate & avulsion rate
increased during PETM & younger early Eocene hyperthermals

- lake expansion allowed by lower siliciclastic sediment
supply, and perhaps more steady precipitation patterns
during weaker monsoon between hyperthermals

- long-term steady basin subsidence & source area uplift
caused by Laramide tectonics

Autogenic controls

-lateral variability in channel-fill characteristics,
lateral variability in the degree of amalgamation

- specific location & frequency of avulsions
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