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Abstract 

 
We have studied a Late Quaternary deepwater channel-fan system in the Gulf of Papua for relationships among sediment supply, 
transport processes, and depositional architecture over centennial to millennial timescales. Our study focuses on two contrasting 
depocenters, Pandora and Moresby Troughs in the Gulf of Papua, and incorporates observations from 3.5 KHz seismic profiles, 
groundtruthed by jumbo piston core analyses. 
 
The age model of Pandora Trough core MV-23 (2,068 m depth) shows a period of rapid sedimentation (41.3 cm/ka) from 44-19 Ka 
Bp, slowing to 20 cm/ka afterward, through the end of Marine Isotope Stage (MIS)-2. The turbidite succession observed in core, tied 
with the seismic profiles, suggests multiple point sources for the fan system, which appears to have shifted oceanward during periods 
of falling sea level. Sand provenance in this core ranges from dissected arc to recycled orogen, with quartz and litho-volcanic 
proportion increasing upward, and suggests the increased supply through time from extrusive volcanic terranes in the southern Fly 
Highlands. A contrasting story is told in the Moresby Trough, through cores MV-22 (2,058 m depth) and 27 (2,071 m depth). The age 
model for core MV-27 shows a lower average depositional rate of 17 cm/Ka. The core is composed primarily of thin sheet sands, with 
provenance varying widely from undissected arc to transitional arc (resembling sources from the Papuan Peninsula) to recycled 
orogen, with upward increasing textural maturity, suggesting additional allochthonous input from drainage systems to the northwest 
(e.g. Fly-Strickland and Kumalo, Kikori, and Purari Rivers). 
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We propose two elements in the source-to-sink narrative for our study area during this period. (1) In the Pandora Trough, turbidite 
sedimentation dominated from late MIS-3 to MIS-2 (>40 Ka - 12.5 Ka), and ceased by early Holocene due to rising sea level and 
associated shelf trapping of sediment. (2) Turbidite sedimentation continued in the Moresby Trough, although at a slower rate, into the 
Holocene transgression. Sediment sources to deep water included reworked shelf edge deposits, and more direct river-mouth supply 
entrained by coastal currents on the flooding continental shelf (<~15 Ka Bp). This flooding and current system enabled coalescence of 
multiple river sources to supply fan aggradation in the Moresby Trough. 
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Summary
Pandora Trough: 
• Feed by single source from Fly highland and Papuan mainland 

(relatively felsic composition).
• Fan development dormant since early sea level rise (17 Ka) (landward 

coastal migration and sediment trapping in shelf).
• Pandora slope degraded without any evidence of active channel fan 

system.
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Moresby Trough: 
• Feed by single source (Papuan Peninsula) in Lowstand period 

continued with additional sources in transgressive period from 
Papuan Mainland and Fly Highland (44-7 Ka)

• The distance between river mouth and shelf-break is too short to 
provides an effective shelf trapping mechanism.              

• Moresby fan avulsion due to local lateral faulting.
• The sediment supply ceased when most of the sediment trapped on 

the shelf

Summary (continued)
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Conclusion
• The depositional style in GOP is strongly controlled by: 
Shelfal width – vicinity to sources – sediment flux and oceanography

• Submarine fan could developed in any system tract given the sources, shelf 
morphology and oceanographic processes provided.

• Highstand and/or Transgressive Fan could potentially create larger 
volume, more interconnected deposits compare to that of Lowstand Fan.

• Our model in Moresby Fan could be used as an analog for a depositional 
model in narrow shelf setting.

• Implication to geoscience : encouragement to re-visit and re-
interpretation transgressive and highstand window to search  for “forgotten” Fan
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