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Abstract

The understanding of deep-water sedimentary processes and systems has developed considerably since Kuenen and Migliorini’s (1950) first
publication on the origin of turbidity currents. Still, their primary methods of investigation, flume studies and outcrop work in the Apennines,
are still very valid methods today, although new technology has allowed for more accurate assessment of flow parameters, resulting
sedimentary architecture and the role of external controls on deposits. Not the least have 3D seismic and the study of modern and sub-modern
deep-water sedimentary systems with shallow seismic and side-scan sonar been instrumental in capturing new data and insight to allow for a
better understanding.

A debate that is still highly active today is the relative role of intrinsic/autocyclic vs. extrinsic/allocyclic mechanisms on flows and
sedimentary architecture. Flow processes vary from dilute, bottom-hugging currents through “normal” turbidity currents to huge mass-
transport events several 1000s of km” in scale. Even though the effects of these processes may be considered intrinsic to the deep-water
sedimentary system, the causes of such events are usually extrinsic. In such a respect deep-water sedimentary systems are different from most
other sedimentary systems because their deposits are dominated by events representing relatively short time periods. In most other
sedimentary environments, the deposits record longer time intervals.

Although the range of external controls, such as sea level change, climate and various types of tectonics, is relatively clear, their relative roles
in time and space are uncertain, even in many modern and sub-modern systems. Across small areas, the relative roles of external factors may
vary significantly, and it is of utmost importance to analyse each system independently. While previously there was a bias towards
understanding deep-water sedimentary systems based on local factors, recent insight into sub-modern and modern systems has shown that
changes even at process level in deep-water sedimentary systems are driven by extrinsic factors in the ultimate onshore sediment source area.
A complete understanding of deep-water sedimentary systems must involve analysis of updip onshore drainage and the adjacent shallow-
marine and slope systems. This complicates analysis of deep-water sedimentary systems at outcrop and ancient systems, where commonly
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only system remnants are preserved. In addition, another complication involves the question of uniformitarianism: how analogous are current
and sub-modern deep-water sedimentary systems to ancient systems?
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The challenge: why worry about
external controls?

® Deep-water sedimentary systems are exceptionally sensitive to changes
In sediment supply driven by hinterland controls
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Prediction for subsurface success, but

C

nallenge of incomplete systems

Middle slope Upper slope

Distinguished Lecture Program

B e L -
=50 oo Tertary P
v P 3
.« L
2000
—2500
~¢— = erosional truncation
e ‘{ 3000
Jackson et al. (2008) 5 km '. AN :
\r""':"' L3
ﬂl% Education Ar
:-; iR [ _;j' .d' f )
&y 4" Statoil



ignificance

Technology s

imaging

for best |

Ine Seismic

Ref

Education

Distinguished Lecture Program

o



__Processes and external controls



Sea-floor processes
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Depositional
processes
and external controls

Outcrop work is essential to understand
subsurface processes and architecture
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Subsurface
expression of debris
flow

Photo by R. Walker
Cretaceous, North Sea
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Seismic expression
* Grooved bases i e
® |ow sinuosity channels

Matrix-supported texture

Long run-out distances?

Hummocky topography
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Near Sea Floor, West Africa [ cramerieves system
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Active sedimentation at low sea level

Abandonment

and reoccupation Late stage: low or rising sea level
- with channel-levee system

Middle stages: lobate/
tabular sands

Initial stage:
debris flows at
falling sea-level

Z

Gjelberg et al. (2001)
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Amazon Fan Pleistocene Cyclicity
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General model: but beware of local controls!
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__Models and external controls



Previous templates for external controls

® Previous templates focused on only
few critical factors for deep-water

. =, Shelf: temporary
deposition Shoreline, (s sediment storage
e \\ ' R

Sandyhfan

Ry

®* On each margin, only a few factors
dominate

— Vary in time and space from
basin to basin

® Are deep-water systems models
useful at all?

* Need to consider using different and Deposition

more Complete templates Modified from Reading and Richards (1994)
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Template 1.

Submarine Fan Length Vs. Deposition Rate
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Template 2: Grain Size Vs. Feeder System
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Template 3: climatic controls

erosion sedimentation

transfer

Response time (a)
=
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Template 4.
Slope accommodation _OffshoreOregon .

® Smooth slopes (no topography)
® Slopes with topography

— Continuous or discontinuous

slope accommodation
shelf / slope break

healed slope
accommodation

steepest stable slope equ thbnum profile
(22stem GOM unconfined siope

wvertical axaggeration 1:675

0.1

above ponded accommodation
grade / space

N

graded slope profile
———— 522 floor

From Prather (2003) Images from:
http://www.ldeo.columbia.edu
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Complete source-to-sink approach
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’%,
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Sgmme et al. (2009)
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Congo River drainage and Gulf of Guinea
example

Total sediment accumulation

A: Syn-rift sediments B: Aptian salt
1,000,000 km3 . 230,000 km3

C: Upper Cretaceous

D: Tertiary
1,000,000 km3

1,200,000 km?3

Thickness in Km

0 05 1 18§ 2 25 3 < 5 10

Leturmy et al. (2003)
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~ Segments and impact.on deep-
_water sedimentation and systems



Morphological approach: linked segments

Can information from one segment provide
guantitative information about other segments?
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Source/drainage systems: useful for deep-
water exploration?

Dendritic Parallel Rectangular Radial

Trellis Centripetal Deranged

http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/fluvial_systems/drainage_patterns.htmi
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Role of shelf in geological time
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Are modern (Plio-Pleistocene) shelf
environments analogues for ancient systems?
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Shelf storage

__ Actlve (small) __ Actlve (large)  Passive Mixed

» Shelf storage increases
with system size

e« Submarine canyons
efficiently bypass sediment
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Shelf accommodation and icehouse-
greenhouse times

Plio-Pleistocene Eocene-Oligocene Late Cretaceous-Paleocene

0

20
40
60
a0

il
=10

Sgmme et al. (2009)

* Decreasing eustatic amplitudes result in:

shallower shelf platform

lower shelf accommodation and more rapid transit times
higher possibility for highstand shelf edge deltas

higher impact of tectonics and sediment supply
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Shelf width, morphology and timing of
sediment transport to deep-water
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Timing and spatial partitioning of deep-water
processes, sediments and surfaces

[ Continental sediments

[ shoreline
Bl Cffshore

Late lowstand fan

Courtesy of W. Helland-Hansen
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Shelfmorphology and transport
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Shelf morphology, processes,
deep-water supply at highstand
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anyon varlablllty role of shelf incision

N ,:f; Greenland
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Slope accommodation

Offshore Oregon

® Smooth slopes (no topography)
® Slopes with topography

— Continuous or discontinuous

slope accommodation
shelf / slope break

healed slope
accommodation

steepest stable slope equ thbnum profile
(22stem GOM unconfined siope

wvertical axaggeration 1:675

J slope 0
above / ponded accommodation o

grade / space
graded slope profile -
———— Sca floor 4 s 1 _{uf
From Prather (2003 Images from:

( ) http://www.ldeo.columbia.edu
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Modern slope morphology (1)

A: New Jersey margin

Images from:
http://www.ldeo.columbia.edu
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Sediment transfer from
shelf to slope at highstand

Modern slope morphology (2) (narrow sheif
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Modern slope morphology (3)

Sediment transfer
through slopes?

Image from:
http://www.ldeo.columbia.edu
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Case: Ormen Lange fan



Complete source-to-sink approach
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Sgmme et al. (2009)
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North Atlantic
Location Map

Present-day
bathymetry
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Geological Setting

®* Mgre and Vgring Basins formed in early
Cretaceous time on continental crust

® Present oceanic fracture zones line up with
Greenland fjords

® Basin configuration influenced by Jurassic
and older extensional structures

— Wide vs. narrow shelf areas

® Jurassic structural relief caused influence
on Palaeocene sedimentation because of
compaction of generally fine-grained
Cretaceous sediments

® Focus on narrow paleoshelf areas
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Paleocene Offshore Mid-Norway
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Paleocene Offshore Mid-Norway
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Ormen Lange: Basin Floor
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upward succession
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® Beds <1.5min
thickness
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1st order topography: age and role?
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/ o Sgmme et al. (2009)
Trendelag ' 4
/ . P

64°N

Platform

v allal r
rondheims-"
__/ﬁord_e-n

- Trondheim

Ona Highr/—-u

nfjordsora _

-

Lamd
,ﬂlﬁ - Ty Trollhelmen
"l 3 . P

/ Eflomsdalsfjorden
W e

> "
-;‘(Is.torfj?rd.e n's ",

62°N

4

" Gudbrandsdalen

Horda
Platform

|:| Deep basin areas Caledonian nappes (Upper-Uppermost Allocthon) e*==+ Basement outcrop boundary = ———= Paleo water divide
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Preserved paleosols
=== Paleic water divide
—— Agnor valleys
——-= Mare-Trandelag Fault Complex
—— Modern water divide
Block fileds
Remnants of paleic fluvial valleys
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Drainage area and fan size: inversion
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Database

Hueneme;

Redondo 5 Jolla

o i

Tropical and sub tropical
Arid
Warm temperate
Cold temperate
" Polar

B Active systems (small)

B Active systems (large)

B passive systems
Mixed systems

Sgmme et al. 2009 (Basin Research)
® 29 modern or sub-modern systems

® Varying margin types in varying climatic zones (non-glacial)
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Analysis from global data
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eData from 29 sub-modern systems
*Slope length: ~5-15 km

» Water depth: 1000-2000 m
 Drainage area: ~20 000 km?

 Longest river channel: ~200 km

Source: Sgmme (2009)
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Inversion: results
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Paleo-topography
reconstruction from
local & global data

B64°N

Sgmme et al.

3000 A
JRedondo Golo Depth to base
Tertiary surface (m) <
[Jo-100 Ferdefjorden
2000 A [ 100- 500 system
[ 500 - 1000
Z| [ 1000 - 1500
ol I 1500 - 2000
B 2000 - 2500
10007 —
I 3500 - 4000
I -4000
g I:lnndata
_"@ 0
D
0%
-1000 -
22000 - Reconstructed profile (dashed; from map)
and corrected for uplift (solid line) and compared
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Reconstruction of paleic terrain (from
, 2009; based on Nesje, 2007)
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Sgmme et al. (2009)
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_Applications and conclusions



Prediction of reservoir presence and quality

Deep-water
channel
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Complete systems

width

%,
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FAN CHANNEL

max height

shelf width

length of longest :
shelf depth ™

river channel

wigth

SUBMARINE CANYON

depth at fan apex

_ | depth at distal fan

Sgmme et al. (2009)
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Source-to-Sink VS.  Sequence Stratigraphy
Complementary approaches to predict sediment partitioning

® Holistic basin analysis ® Stratigraphy-dominated

® Process-oriented ® Product-oriented

® Integration of earth processes ® Sink-focused

® Natural systems with inherent complexity ® Model-oriented 3D concepts, 2D practice
®* Map-view and volumetric focus ® Cross-sectional/depth focus

Depositional sequence
width ,%’ p—
‘ ‘ th -

i s p——————

max heig = %\ s
FAN CHANNEL
length oflorlgast Peri \ olf shelf width Systems tracts
river channel 2 distance shel

TET

,,,\dm

depth at distal fan

Parasequence

—

SUBMARINE CANYON

Dave Hunt, unpublished
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Application to hydrocarbon exploration

e

® Prediction in frontier basins and of lithology

® Paleo - Digital Elevation Models and Earth
Systems Modelling

Digital elevation model, reconstructed plates,
drainage basins and sediment yield (circles)
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