Salt Evacuation History and Depositional Corridors in the Annapolis and Crimson Region - Do These Wells Really Provide an Accurate Test of Sand Presence in Deepwater?*

Kris L. Kendell¹ and Mark E. Deptuck²

Search and Discovery Article #40622 (2010)
Posted October 29, 2010

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, New Orleans, Louisiana, April 11-14, 2010

¹Canada Nova Scotia Offshore Petroleum Board, Halifax, NS, Canada (kkendell@cnsopb.ns.ca)
²Canada Nova Scotia Offshore Petroleum Board, Halifax, NS, Canada

Abstract

Annapolis G-24, drilled in 2002, was the first deepwater well in offshore Nova Scotia to encounter hydrocarbon charged reservoir quality sands. The well encountered 27 m of net gas pay in fine to medium grained turbidite sandstones with good porosity and permeability. Crimson F-81 was drilled two years later, and pursued a similar salt withdrawal related play along the same depositional fairway. The well encountered minor reservoir quality sand, but no significant hydrocarbon bearing zones. This result demonstrates that the depositional systems for transporting reservoir sands from the shelf to the slope are not well understood.

Although the highly complex structural geology makes correlation of seismic markers in the study area challenging, the construction of salt contact maps has helped to improve the understanding of allochthonous salt evolution. This allows us to make educated and geologically plausible correlations through areas of detachment, counter-regional growth, and across salt welds and salt bodies. Combined with time-thickness maps, our results demonstrate that salt tectonics played an important role in controlling the distribution of Jurassic and Cretaceous sediment near these wells. Specifically, salt tectonics created paleo-bathymetric highs and lows on the slope that caused deepwater strata to thin and thicken, respectively.

Jurassic and Cretaceous time-structure maps indicate that paleobathymetric highs were oriented perpendicular to the present-day shelf-edge. The highs influenced the trajectory of sediment gravity flows, with isochron maps indicating that both wells were drilled on stratigraphic thins relative to nearby salt withdrawal depocenters. Stratigraphic thinning appears to be directly linked to paleobathymetry, specifically with both wells targeting the thinned flanks of an intra-slope minibasin. The fact that these wells still encountered reservoir quality sand while penetrating stratigraphic thins is promising, and suggests that more sand may be present in
the isochron thicks to the east. Identification of canyons up-slope from these isochron thicks provides a link between the sand-prone Mississauga and Logan Canyon formations on the shelf and intra-slope minibasins located seaward. Recognition of these canyons support the idea that significant quantities of reservoir grade clastics were transported into deepwater, but drilling efforts to date have not yet adequately tested the thickest stratigraphic intervals.

Selected References

Website

Salt evacuation history and depositional corridors in the Annapolis & Crimson region – do these wells really provide an accurate test of sand presence in deepwater?

- Kris Kendell and Mark Deptuck, Canada-Nova Scotia Offshore Petroleum Board
- 2010 Annual AAPG Convention & Exhibition – New Orleans
- April 14th, 2010
Outline

• Lateral variations of evacuation styles inboard the salt canopy
• Well penetrations and isochron maps within the Annapolis stepped counter-regional system (ASCRS) - interpreted depositional corridors
• Connection between isochron thick and canyon heads – candidate location for Cretaceous shelf break?
Regional Setting
Study Area

Salt tectonic subprovinces of the Scotian Basin. Subprovince III, the zone of allochthonous salt canopies is the focus of this study (black box above).

(Shimeld, 2004)

Gridded area is approx. 11,500km²
Late Cretaceous Structure Map with Salt (green)
Transect 1 – Balvenie Roho System
Transect 1 – Balvenie Roho System

Defining features: series of roller faults, continuous salt weld reflector (~55 km), welded salt feeders beneath the detachment surface and landward dipping reflectors above detachment surface
Transect 1a – Balvenie Roho System (strike)
Transect 1a – Balvenie Roho System (strike)

Defining features: “concave” reflectors (half turtle), surrounded by younger minibasins (moat), expelling salt laterally as well as basinward.
Late Cretaceous Structure Map with Salt (green)
Transect 2 – Stepped Counter-Regional System
Defining features: basinward dipping reflectors, stepped morphology of advancing allochthonous salt, minor amounts of detachment and roller faults, rollover fault and counter-regional fault (clipped out of diagram- visible in shallower section)
Transect 3 – Canopy loading/Detachment
Defining features: multiple welded salt feeders, turtle structure, salt withdrawal minibasins, salt nappe and minor amounts of detachment.
Late Cretaceous Structure Map with Salt (green)
- Drilled by Marathon in 2002, targeting Albian/Aptian turbidite sands within a large structural closure that formed as a result of adjacent salt withdrawal

- Encountered 27 m of net gas pay in Barremian to Hauterivian aged sands

(Kidston et. al, 2007)
- Drilled by Marathon in 2002, targeting Albian/Aptian turbidite sands within a large structural closure that formed as a result of adjacent salt withdrawal

- Encountered 27 m of net gas pay in Barremian to Hauterivian aged sands

(Kidston et. al, 2007)
- Drilled by Marathon in 2002, targeting Albian/Aptian turbidite sands within a large structural closure that formed as a result of adjacent salt withdrawal.
- Encountered 27 m of net gas pay in Barremian to Hauterivian aged sands.

(Kidston et. al, 2007)
- Follow up well by Marathon in 2004, targeting a faulted anticlinal feature related to salt withdrawal, anticipating better developed H, L and M sand intervals in a “backstop” position against salt.

- H, L and M sands intervals were not well developed within Crimson but a deeper sand interval (O sand ~ 13 m thick) was penetrated. No hydrocarbon charge
- Follow up well by Marathon in 2004, targeting a faulted anticlinal feature related to salt withdrawal, anticipating better developed H, L and M sand intervals in a “backstop” position against salt.

- H, L and M sands intervals were not well developed within Crimson but a deeper sand interval (O sand ~ 13 m thick) was penetrated. No hydrocarbon charge.
Stratigraphic Column/Seismic Stratigraphy

Mid Cretaceous – Jurassic Isochron

- Both wells drilled lower Cretaceous thick related to early salt withdrawal
• Annapolis only penetrated the very upper 100-200 m of this interval.

• Excellent reservoir sands (M sands 18 m net pay) are penetrated at this well location.
- M sand penetrated at Annapolis is not present here.
- A deeper (but wet) sand is encountered, the O sand approx 13 m thick.
Both wells penetrate an interpreted depositional corridor, but only penetrate the uppermost 100 - 200 m section.

M sand at Annapolis and O sand at Crimson are the thickest sands encountered to date in deepwater.
Mid Cretaceous Isochron

- Both wells drilled
 Mid Cretaceous thins relative to other locations
- Annapolis penetrated one of the thinnest sections of this interval
- Encountered both the H and L sands within this interval
- No sands present within this interval at Crimson
- Expands in thickness to the northeast (approx. 300 m at borehole to greater than 1000 m in the NE)
Mid Cretaceous Depositional Corridors

- Neither well penetrates an interpreted depositional corridor
 - Annapolis’ H and L sands are within this interval, and may be explained by being in close proximity to the interpreted depositional corridor
 - The thickest mid Cretaceous depocenters have yet to be penetrated
Conclusions - do these wells really provide an accurate test of sand presence in deepwater?

- Both wells penetrate Lower Cretaceous thicks and were successful in finding sand in those zones (M and O sands), but they are only representative of the upper 100-300 meters of the Lower Cretaceous.
- Both wells penetrate Mid Cretaceous thins and are not representative of deepwater deposition during this period, there are much thicker depocenters to target.