Selection of Geological Models for Uncertainty Assessment with a Novel Streamline Approach*

Michael D. Hogg¹, G. Michael Shook² and Michael Pyrcz³

Search and Discovery Article #40567 (2010)
Posted July 23, 2010

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, New Orleans, Louisiana, April 11-14, 2010

¹Earth Science Department, Chevron Energy Technology Company, Houston, TX (michaelhogg@chevron.com)
²Reservoir and Production Engineering, Chevron Energy Technology Company, Houston, TX
³Earth Science Research and Development, Chevron Energy Technology Company, Houston, TX

Abstract

Exploration and appraisal efforts are progressively migrating to deeper and more poorly understood reservoir systems. Costs to assess commerciality alone can be extremely high. Consequently, the uncertainty space of geological features impacting in-place hydrocarbons and reservoir performance must be thoroughly evaluated for sound investment decisions.

Limited numbers of wells may be the only data source for pre-test reservoir characterization if seismic is of little use in mapping rock properties and architecture. The extremely small volume sampled by wells emphasizes the need to thoroughly investigate uncertainty distributions of reservoir properties. Numerous models may be required to fully capture geological uncertainty affecting economic evaluation. Available tools permit efficient batch running of many models once uncertainty ranges for input variables are established.

Our approach to dynamic ranking involves use of streamline simulation to characterize the spectrum of geological conditions influencing flow behavior. The simulations are simple single phase cases requiring minimal resources. Analysis of streamline data are performed with proprietary code. Results of the analysis include storage capacity, flow capacity and sweep efficiency vs. time for each model. Furthermore, a Lorenz coefficient (a standard measure of heterogeneity under dynamic conditions) is determined for each geological scenario. Models are ranked by the Lorenz coefficient, so that realistic distributions are included in economic uncertainty analysis.
Results are conditional to injector-producer schemes, net-to-gross, depositional architecture, facies relations and permeability-porosity structure. Consequently, a reasonable conceptual understanding of local depositional and diagenetic settings is necessary. Sensitivity of results to conditioning information is useful in discerning relative contributions of inputs and, if necessary, tuning the workflow.

We consider ranking the dynamic behavior of geological models as a recommended practice. Straightforward workflows provide effective distillation of large numbers of earth models to a select few for detailed flow simulation. Time consuming model recycling between simulation engineers and earth modelers is substantially reduced as well due to embedded quality control and a priori knowledge of flow characteristics.

References

Selection of Geological Models for Uncertainty Assessment With a Novel Streamline Approach

Michael Hogg, G. Michael Shook, Michael Pyrcz
Chevron Exploration Technology Company

AAPG 2010 Annual Convention & Exhibition
New Orleans, Louisiana
Acknowledgments

Julio de la Colina
Elena Sapozhnikov
Barney Issen
Mike Waite
Joseph Hovadik
Alan Bernath
Dan Khan
De Ville Wickens
Dave Larue

Bill Milliken
Irene Gullapalli
Morgan Sullivan
Larry Zarra
Tom Mooney
Sebastien Streabelle
Himansu Rai
Moon Chaudhri
Objectives of Our Approach

- Provide appropriate end-member depositional architectures relative to a deterministic base case to adequately span the uncertainty space of possible geological conditions.

- Provide a basis for dynamic ranking performance of reservoir (geological) models prior to significant time investment by reservoir (simulation) engineers.

- Increase the efficiency of the “static” modeling workflow by ranking architecture-based heterogeneity prior to detailed modeling of petrophysical properties.

- Eliminate the “hey! ...your low case is too connected...” concern of simulation engineers by having in-hand quantitative connectivity assessment.
Reasons for Our Approach

Shook and Mitchell (2009) demonstrated the dynamic Lorenz coefficient to be the most robust of 5 studied measures for ranking models by dynamic heterogeneity. Their evaluation included 450 simulation cases and their results demonstrate heterogeneity is a very good predictor of project economics (figure below).

Advances in modeling of depositional settings (e.g., Pyrcz, et al., 2006) allow for the construction of detailed expert-driven rule-based architectures which together with permeability govern heterogeneity.

Process of Dynamic Heterogeneity Assessment

Earth model construction

Dynamic analysis leading to forecasts and economic models
Key Words

- Architecture
- F – PHI curve
- Dynamic Lorenz coefficient
Factors Affecting Streamline Based Heterogeneity

Examples of depositional architecture, net-to-gross, and permeability affecting heterogeneity described by the Dynamic Lorentz coefficient.

<table>
<thead>
<tr>
<th>Image</th>
<th>Fan Position</th>
<th>Predominant Architectural Element</th>
<th>Net-to-Gross</th>
<th>Permeability</th>
<th>Lorentz Coefficient Swept PHI</th>
<th>Lorentz Coefficient Total PHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>distal</td>
<td>sheet</td>
<td>10</td>
<td>low</td>
<td>0.62</td>
<td>0.74</td>
</tr>
<tr>
<td>B</td>
<td>mid</td>
<td>ch. sheet</td>
<td>30</td>
<td>low</td>
<td>0.52</td>
<td>0.59</td>
</tr>
<tr>
<td>C</td>
<td>proximal</td>
<td>channel</td>
<td>50</td>
<td>high</td>
<td>0.39</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Model Architecture Construction

1. Generic Depositional Model
 - Establish appropriate depositional setting of reservoir

2. Analogs
 - Compile geometrical information of selected depositional setting

3. Model Architecture
 - Construct model architecture based on depositional setting and geometrical constraints

4. Property Distributions
 - Populate architectural framework with sand/non-sand lithology, permeability
A submarine fan depositional setting was selected to model architecture.

The depositional setting of each case was constant areally.

Evaluated a continuum of inner-to-distal fan architectural models.
Architecture Analogs: Skoorsteenburg Fm., Tanqua Karoo Basin, South Africa

- Channel Element

- Channelized Sheet Element

- Channelized Sheet Element

- Unconfined Sheet Element
Event-based models – realistic architectures, by a rule-based forward geostatistical method developed in Chevron. (Pyrcz et al., 2006)
Sand – No-sand Training Images Derived from Architecture Models

A. Architecture model having channel (blue-green) and sheet elements (orange-red) in submarine fan setting.

B. Channel-dominant training image for sand – no-sand modeling in proximal fan settings.

C. Sheet dominant training imaged for sand – no-sand modeling in more distal fan settings.
Petrophysical Properties

Porosity Model

Permeability Model

PHIT Distribution

Permeability Model

Porosity vs. Permeability Graph
Streamline simulation
Flow Capacity – Storage Capacity (F - PHI) and Lorenz Coefficient

<table>
<thead>
<tr>
<th>h(ft)</th>
<th>K(md)</th>
<th>φ</th>
<th>Kh</th>
<th>φh</th>
<th>F</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>0.25</td>
<td>2500</td>
<td>1.25</td>
<td>0.7654</td>
<td>0.33</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0.2</td>
<td>500</td>
<td>1</td>
<td>0.9077</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>0.25</td>
<td>250</td>
<td>0.75</td>
<td>0.9834</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>0.1</td>
<td>50</td>
<td>0.5</td>
<td>0.9985</td>
<td>0.933</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.05</td>
<td>5</td>
<td>0.25</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

3305 3.75

Flow Capacity – Storage Capacity

\[Lc = 2 \left(\int_{0}^{1} F d\Phi - 0.5 \right) \]

Lorenz Coefficient

Modified from Shook and Mitchell, 2009, SPE 124625 and references therein
Streamline Workflow

1. Export Models to Simulator Format
 • Convert “static” property models to format required for streamline simulation

2. Run Streamline Simulations
 • Run Streamline simulation on models at selected well patterns and spacing

3. Read Streamline Information
 • Read attributes pertinent to fluid flow from streamline data

4. Compile Results and Select Models
 • Analyze streamline attributes and select appropriate models for detailed flow simulation
Streamline Analytical Procedure

- Generic simulation deck contains 3 include statements for property grid and well information.
- Run a streamline simulation for a few time steps.
 - No transients; steady state (volume replacement)
- Read streamline volumetric flow rate and time of flight.
- Compute pore volume represented by each streamline
- Calculate Dynamic F-Φ curve and Lorenz coefficient (heterogeneity indicator; Shook and Mitchell, 2009)

Abbreviations

- **Lc** – dynamic Lorenz coefficient.
- **Lc1** – dynamic Lorenz coefficient computed from swept pore volume.
- **Lc2** – dynamic Lorenz coefficient computed from total pore volume.
Two Storage Capacity – Flow Capacity Curves can be Computed

- Blue curve (Lc1) describes heterogeneity for swept PV
- Red curve (Lc2) describes heterogeneity for total PV
 - 44% of PV is unswept
Lc1 and Lc2 (Lorenz Coefficients) Plotted vs. Swept/Total Pore Volume Ratio

A. Crossplot of swept pore volume to total pore volume ratio vs. Lc computed from swept pore volume. NTG scale in color boxes. Increasing symbol size representing more proximal positions.
- Lc1 plummets at 30% NTG and 0.85 Vpvs/Vpvt.
- Lc1 plateaus at 0.61.
- Significant implications with respect to thief zones in secondary and tertiary recovery

B. Crossplot of swept pore volume to total pore volume ratio vs. Lc2 computed from total pore volume. NTG scale in color boxes. Increasing symbol size representing more proximal positions.
- Lc2 diminishes linearly until ~ 30% NTG and 0.80 Vpvs/Vpvt then plummets in similar fashion as Lc1.
- More applicable to primary recovery.
Model selection: CDF ranking

- Order to rank Lc results and select streamline cases for detailed modeling.
- Compare associated ranked streamline results and select models based on balancing attributes of respective properties.
Model selection: CDF ranking

- Example of models selected by CDF ordering of Lc2 from previous slide.
 - Note that < 20% of total pore volume contributes to 50% flow capacity for all cases.
 - A. 50% flow capacity from 8% PV.
 - B. 50% flow capacity from 12% PV.
 - C. 50% flow capacity from 19% PV.
Model selection: Multivariate Analysis

- Multivariate plots useful for selection of cases for detailed modeling.
- Depending on level of confidence in depositional setting one may elect to rank models for detailed analysis using all depositional model cases (A), or rank models based on specific depositional positions (B, C, and D).
- High-level understanding (expert opinion) of, e.g., development strategy (exploration/appraisal) dictates variable combinations appropriate for model ranking.

Displayed variables include:
- Lc1 (x-axis)
- Lc2 (y-axis)
- Net-to-gross (color box scale)
- Vpvs – Vpvt ratio (plot symbol shape)
- 5-spot pattern size (plot symbol size)
Conclusions

- Expert guided rule-based depositional models provide detailed and conceptually accurate reservoir architecture essential to ascertain the uncertainty range of fluid-flow characteristics critical to economic analysis.

- The dynamic Lorentz coefficient provides a means of rapidly ranking earth models to capture the uncertainty space of subsurface geological conditions.

- Correlation of the dynamic Lorentz coefficient to key economic drivers may provide early insight into a project’s financial viability.

- Early evaluation of heterogeneity enhances efficiency of the modeling workflow. Simulation engineers also receive earth models with a priori understanding of heterogeneity.
Thank you