Click to view article in PDF format.
GCThin-Bed Interpretation Using Reference Surfaces*
Bob Hardage1
Search and Discovery Article #40535 (2010)
Posted May 31, 2010
*Adapted from the Geophysical Corner column, prepared by the author, in AAPG Explorer, May, 2010, and entitled “Looking High and Low for References”. Editor of Geophysical Corner is Bob A. Hardage (mailto:[email protected]). Managing Editor of AAPG Explorer is Vern Stefanic; Larry Nation is Communications Director.
1Bureau of Economic Geology, The University of Texas at Austin ([email protected])
The fundamental criteria required of a seismic
reflection
event that is to be used as a reference surface for interpreting thin-bed geology are that the seismic
reflection
should:
1) Extend across the entire seismic image space and have a good signal-to-noise character.
2) Be reasonably close (vertically) to the geology that is to be interpreted.
3) Be conformable to the strata that need to be analyzed.
Criterion 3 is probably the most important requirement on this list.
| |
|
Figure 1 shows a data window from a vertical slice through a 3-D seismic volume centered on a channel system that is to be interpreted. The seismic
Four horizon surfaces labeled A, B, C and D, each conformable to the reference surface, pass through the targeted channel system on Figure 1b. Each of these horizon surfaces can tentatively be assumed to be a reasonable approximation of a stratal surface that intersects the channel system because each horizon is conformable to the selected reference
Figure 2a shows
In challenging interpretation problems, it is important to try to define two seismic reference surfaces that bracket the geological interval that is to be interpreted – one reference surface being below the geological target and the other being above the target. An interpreter can then extend conformable surfaces across a targeted interval from two directions (from above and from below). Sometimes one set of conformable surfaces will be more valuable as stratal surfaces than the other at the level of a targeted thin bed.
To illustrate the advantage of this opposite-direction convergence of seismic horizon surfaces, a second reference surface was interpreted above the targeted channel system and was placed closer to the target interval. This second reference surface followed the apex of the
The
This dual-direction approach to constructing horizon surfaces that traverse thin-bed targets is a concept that often will provide valuable results. An even better approach would be to calculate stratal slices through a bracketed data window – a concept discussed and illustrated in the Geophysical Corner article published June 2006 (http://www.searchanddiscovery.net/documents/2006/06036zeng_gc/index.htm).
Unfortunately, not all interpretation software provides a stratal slicing option. In those cases, a dual-direction-approach strategy such as described here can be valuable for constructing horizon slices that approximate stratal slices.
Copyright © AAPG. Serial rights given by author. For all other rights contact author directly. |
