PS Does Bioturbation Enhance Reservoir Quality? A Case Study from the Cretaceous Ben Nevis Formation, Jeanne D’Arc Basin, Offshore Newfoundland, Canada*
Nicola S. Tonkin1, Duncan McIlroy1, Rudi Meyer2 and Allison Turpin1

Search and Discovery Article #50221 (2009)
Posted November 20, 2009

*Adapted from poster presentation at AAPG Convention, Denver, Colorado, June 7-10, 2009

1Department of Earth Sciences, Memorial University of Newfoundland, St John's, NF, Canada. (nstonkin@mun.ca)
2Department of Geoscience, University of Calgary, Calgary, AB, Canada.

Abstract

The delineation well Ben Nevis L-55 located in the Hebron/Ben Nevis Field of offshore Newfoundland, targets the Ben Nevis Formation in the petroleum-rich Jeanne d’Arc Basin. This case study focuses on the bioturbated net pay horizons, with the objective to understand the importance of animal sediment interactions in controlling the porosity & permeability of sandstone reservoir intervals. Core was logged, analyzed and sampled in order to determine the influence that bioturbation has on petrophysical properties. Laboratory analyses of samples, included petrographical analysis using standard thin sections and large thin slices; probe-permeameter measurement of permeability; and porosity is estimated using dye-impregnated thin sections.

The net-pay interval is dominated by persistent and conspicuous Ophiomorpha burrows, which upon initial hypothesis (without laboratory analyses) have a direct relationship to enhancement of porosity and permeability. Results reveal this is not the case; Ophiomorpha burrows reduce permeability relative to the host sediment. Conversely, less conspicuous unlined burrows of Thalassinoides show enhancement of permeability.

Sorting is a fundamental control on primary porosity and biogenic sediment reworking can modify grain size sorting. Results demonstrate that intra-burrow porosity increases in open burrows such as Thalassinoides, where burrow fill is commonly coarser than
matrix, although the converse relationship is true when the burrow-fill is mud-rich. Intra-burrow porosity is low in Ophiomorpha burrows, where thick mud and organic rich burrow fills and linings exist. Inter-burrow (matrix) porosity is commonly enhanced in highly bioturbated fabrics, where mud grade material is removed from the matrix and incorporated into burrow linings and fills. In sparsely bioturbated facies, mud-rich inter-burrow porosity can be highly dependent on the behavior of the trace making organisms and intensity of bioturbation.

Complex relationships exist between bioturbation and petrophysical properties in the studied material. Bioturbation can enhance or reduce porosity/permeability, dependent on trace fossil morphology, composition of burrow linings/fills, burrow size and bioturbation intensity. Our data should be compared with other studies of similar reservoir intervals to establish general models for the effects of bioturbation on petroleum reservoirs.

References

matrix, although the converse relationship is true when the burrow-fill is mud-rich. Intra-burrow porosity is low in Ophiomorpha
burrows, where thick mud and organic rich burrow fills and linings exist. Inter-burrow (matrix) porosity is commonly enhanced in
highly bioturbated fabrics, where mud grade material is removed from the matrix and incorporated into burrow linings and fills. In
sparsely bioturbated facies, mud-rich inter-burrow porosity can be highly dependent on the behavior of the trace making organisms
and intensity of bioturbation.

Complex relationships exist between bioturbation and petrophysical properties in the studied material. Bioturbation can enhance or
reduce porosity/permeability, dependent on trace fossil morphology, composition of burrow linings/fills, burrow size and bioturbation
intensity. Our data should be compared with other studies of similar reservoir intervals to establish general models for the effects of
bioturbation on petroleum reservoirs.

References

Cannon, S. J. C., and S. Gowland, 1996, Facies controls on reservoir quality in the Late Jurassic Fulmar Formation, Quadrant 21,

Core Laboratories Canada Ltd., 1999, Core analysis report for Jeanne d'Arc Basin operations: Chevron et al Ben Nevis L-55, Ben

ichnologically influenced macroporosity in the karst Biscayne Aquifer: stratiform "super-K" zones: Geological Society of America

Garton, M., and D. McIlroy, 2006, Large thin slicing: a new method for the study of fabrics in lithified sediments: Journal of

