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Abstract

Nonmarine sequence stratigraphic models hypothesize systematic changes in fluvial architecture and style within individual sequences and
across sequence boundaries. These models, however, are largely assumed rather than documented.

Major fluvial bodies are well exposed along depositional strike near the top of the Ferron Notom Delta in the Henry Mountains region, Utah.
Field correlation and mapping show that these fluvial facies are contained within a wide compound incised valley. The valley is partitioned
into two unconformity-bounded sequences, each of which comprises a multistory fill that reaches a maximum thickness of about 30 m. The
two major erosional surfaces extend laterally for several kilometers and shows erosional relief up to 10 m. Each erosion surface shows a
marked basinward shift in faces.

Detailed bedding architectural analysis establishes the fluvial style within each valley fill. Within the younger valley, there is a systematic
evolution of fluvial style from braided, to braided with meandering reaches, and finally to a low sinuosity river systems with channels
occupied by dune fields. In contrast, formative rivers within the older valley are always meandering. A major change in valley sedimentology
is recognized as shown by the changes in regional flow direction, over all grain size, channel geometry, and fluvial style. Paleocurrent data
shows that there is a 30° eastward shift in main flow as the compound incised valley evolves from the older to the younger system. A clear
change in fluvial style from meandering into braided streams across the basal erosional surface of the younger valley is documented. The river
deposits also show a distinct increase in overall grain size and greater preserved dune height across the boundary. Paleohydraulics
calculations suggest an increase in river dimension and discharge across the boundary.
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Changes in fluvial style within the younger valley are interpreted as the result of loss of slope and/or discharge during the gradual filling of
the valley. The change in fluvial style across the sequence boundary is interpreted, however, as the result of a possible high-frequency climate
change driven by Milankovitch cycles, even though short-term and low-amplitude eustasy is also the driving force for the development of the
incised valleys.
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Turonian paleogeography of North America
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Stratal and facies organization within the
compound incised valley
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Deformed fluvial sandstone
overlain by heterolithic tidal
facies



Tidal facies
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Internal facies organization within each valley episode

= Ms: marine shoreface sandstone

e FACL1: coarse-grained fluvial sandstone
= FAC2: fluvial sandstone

e FAC3: fluvial overbank fines

e FAC4: sandy tidal deposits

e FACS5: muddy tidal deposits



Unidirectionally dipping bed/bed sets
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Bedding architecture of the meandering TST/HST deposits in V2
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Bedding architecture of the braided channel Chl inV1
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Coss channel bar (CCB), sand sheet (SS), and sand flats.

The common occurrence of chutes and fills most probably indicates variable discharge.




Bedding architecture of the braided channel ChS5 in V1
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» Common occurrence of slipface bounded tabular sets (SFTS);

* Less common chutes and fills;

* Overall smaller macroforms (generally less than 1 m thick and 35 m wide);
* Clearly different architecture from that in Chl.




Typical macroforms within the braided channel ChS5
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Unidirectional d:pp:ng meandeﬂng tidal channel deposits




Change in
fluvial style

fluvial style

What controls the change in fluvial style across
the sequence boundary?

e Increase in grain size? Yes
e Increase in slope? possible

* Increase in discharge?

paleoflow and the

appro?umate shore line Channel-forming discharge ———= (Brldge 2006)
direction. ’




Increase in discharge from V2 to V1

(possible climate change)
Bridge and Tye (2000) Bhattacharya and Tye (2004)

Average cross-set Average dune Estimated water Maximum channel/bar Flow velocity  Average channel Channel discharge
thickness (cm) height (cm) depth (m) thickness from field data (m) (cm/sec) width (m) (1113.-"'sec)

24 71 4.3-7.1 8.4/7.3 100-160 168 420-1290

16 47 3.0-5.0 5.5/4.8 80-125 80 110-310

Techniques from Bridge and Tye (2000), Bhattacharya and Tye (2004), Bhattacharya and MacEachern (in press).

Analysis of dune height, flow depth, paleodischarge for the formative rivers within V1 and V2.
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Histogram of cross-strata thickness of fluvial sandstones within V1 and V2. Cross-strata thickness within V1 is larger than
that within V2.




There is a systematic vertical change in facies from sheet fluvial sandstone, into heterolithic
tidal facies, and finally back into fluvial facies within each of the valleys, similar to that
predicted by the nonmarine sequence stratigraphic models.

A change in fluvial sedimentology occurred from V2 to V1, as evidenced by the increase river
discharge and changes paleocurrent directions and fluvial style. This is interpreted partially as
the result of a climate change.

Within V1, formative rivers change temporally from braided, to meandering tidal channels, and

finally to a low sinuous river system dominated by dunes. In contrary, formative rivers
within V2 seems always meandering. Predicting fluvial architecture is more effective

than fluvial style.

Climate
driven by Milankovitch cycles

Increase in water discharge

Change in
Change in fluvial style

fluvial style




Acknowledgements

UNIVERSITY of HOUSTON

oo

Thanks for your attention

anadari@p®
Patroleurn Corparalion



References

Bhattacharya, J.P. and J.A. MacEachern, 2009, Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America:
Journal of Sedimentary Research, v. 79/4, p. 184-209.

Bhattacharya, J.P. and R.S. Tye, 2004, Searching for modern Ferron analogs and application to subsurface interpretation: AAPG Studies in
Geology v. 50, p. 39-57.

Bridge, J.S., 2006, Fluvial facies models; recent developments: Special Publication Society for Sedimentary Geology, v. 84, p. 85-170.

Bridge, J.S. and R.S. Tye, 2000, Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs
and cores: AAPG Bulletin, v. 84/8, p. 1205-1228.

Miall, A.D., 1997, Canada's distinguished record of sedimentary geology: Mineralogical Association of Canada, Canadian Geophysical Union
Joint Annual Meeting, Program with Abstracts Geological Association of Canada, v. 22, p. 102-103.

Miall, A.D., (reviewer), 1997, Advances in fluvial dynamics and stratigraphy; book review:
Sedimentary Geology, v. 109/3-4, p. 362-364.

Shanley, K.W. and P.J. McCabe, 1994, Allocyclic controls on deposition of continental sediments; a matter of time: American Association of
Petroleum Geologists and Society of Economic Paleontologists and Mineralogists Annual Meeting Abstracts, p. 256-257.

Shanley, K.W. and P.J. McCabe Peter J., 1994, Perspectives on the sequence stratigraphy of continental strata: AAPG Bulletin, v. 78/4, p.
544-568.





