Continental Shelves as the Lowstand Fluvial Longitudinal Profile: Possible Implications for Icehouse vs. Greenhouse Stratigraphic Records*

Mike Blum¹

Search and Discovery Article #50154 (2009)
Posted January 20, 2009

*Adapted from oral presentation at AAPG Annual Convention, San Antonio, Texas, April 20-23, 2008

¹Louisiana State University, Baton Rouge, LA (mike@geol.lsu.edu)

Abstract

This article suggests that lowstand fluvial profiles represent the first-order morphodynamic state for continental shelves, and river long profiles are graded to shelf margins. Over the last 10^6 yrs mean sea level has been -60 to 65 m, with a mode at -85 to -90: for most of this time, the majority of shelves would have been subaerial. Long profiles for river systems have equilibrium times $> 10^4$ to 10^5 yrs: they should be adjusted to mean states over time scales that are \geq equilibrium times, and insensitive to the anomalous and infrequent highstands. On a global scale, shelf gradients and widths correlate to onshore fluvial gradients and drainage areas.

In an icehouse world, high-frequency climate changes are coupled to changes in ice volume, and unsteadiness of sediment supply due to climate change is modulated by the transit of river mouths across the shelf. Moreover, the transit of river mouths across a broad shelf results in the merger of river systems that discharge separately to the coastal oceans during highstand: merging of drainage basins increases the magnitude of individual point-source sediment supply, but there will be fewer river mouths and delta systems at the shelf margin than there are during highstand time. These relationships should be fundamentally different in a Greenhouse world: high frequency, long distance transit of river mouths and deltas, and merger of drainage basins should not occur to the same degree.

In an Icehouse world, then, major high-frequency (time scales $< 10^6$ yrs) changes in fluvial-deltaic, shelf-margin, slope, and basin-floor stratal packages will reflect fluvial responses to sea-level change. In a Greenhouse world, high-frequency stratigraphic packaging should be closely coupled to unsteadiness in sediment supply due to climate change, rather than modulated by fluvial transit of the shelf, and merging of drainages.
CONTINENTAL SHELVES AS THE LOWSTAND FLUVIAL LONG PROFILE

And Some Possible Implications for Icehouse vs. Greenhouse Stratigraphic Records

Mike Blum
Department of Geology and Geophysics
Louisiana State University
Baton Rouge, Louisiana
A) Process classification of continental shelves, depending on the relative balance of “fair-weather” processes (oceanic currents, tides, and waves) with storms.

Numbers refer to shelf regions discussed in this review (after Johnson and Baldwin, 1996).

A) A simplified version of the conceptual shelf process classification, which recognizes the similar depositional effects of tides and semi-permanent oceanic currents as one apex of the triangle (after Johnson and Baldwin, 1996; Galloway and Hobday, 1996). Numbers refer to shelf areas illustrated or discussed in this review.
TOPICS OF DISCUSSION

- constructional clastic shelves as the “continental terrace”
- equilibrium times and mean sea-level positions
- “graded” river long profiles and the shelf margin
- unsteady vs. steady sediment supply
- merging and unmerging of drainages during shelf transit
- speculations on “icehouse” vs. “greenhouse” worlds
What are the source-to-sink processes and scaling relationships that control sediment dispersal to the shelf margin?
recognized that shelves were constructional, and represented repeated fluvial-deltaic progradation during sea-level fall and lowstand
recognized coincidence between shelf margin depth and widely inferred Pleistocene lowstand sea levels of ~ -120 to -130 m

after Curray and Moore (1964)
recognized that shelves were constructional, and represented repeated fluvial-
deltaic progradation during sea-level fall and lowstand
recognized coincidence between shelf margin depth and widely inferred
Pleistocene lowstand sea levels of ~ -120 to -130 m

after Curray and Moore (1964)
SHELVES AS THE DOWNDIP EXTENSION OF THE FLUVIAL LONG PROFILE?
- passive margin shelf widths are usually >> 50 km
- active margin shelf widths are usually << 50 km
TO WHAT ARE RIVER SYSTEMS GRADED?
EQUILIBRIUM RESPONSE TIMES

Diffusion-Based Characteristic Response Times
For Major Landscape/Seascape Features

\[T_{eq} = \frac{L^2}{k} \]

where:
- \(T_{eq} \) = response time (yrs)
- \(L \) = length of system (km)
- \(k \) = diffusivity = \(Q_s/W \)
- \(Q_s \) = sediment flux (MT/yr)
- \(W \) = channel or floodplain width (m)

- Response times for long profiles of most river systems along constructional margins commonly exceed ~100-200 kyrs
- Long profiles for major river systems are therefore likely “graded” to mean conditions over time periods that equal or exceed characteristic response times!! Over shorter time scales, response decays with distance \(L = T_k^{0.5} \)

from Paola (2000)
EQUILIBRIUM RESPONSE TIMES

Diffusion-Based Characteristic Response Times
For Major Landscape/Seascape Features

from Paola (2000)
GLOBAL SEA LEVEL CHANGE: 1-0 MA

SEA-LEVEL CHANGE, 1-0 MA

Falling Sea Level 55% of Time
Rising Sea Level 45% of Time

FREQUENCY OF SEA-LEVEL ELEVATIONS, 1-0 MA

Mean = -62 m
SD = 31 m

SEA-LEVEL CHANGE RATE FREQUENCIES

data from Miller et al. (2005)
LONG PROFILE OF LOWER COLORADO RIVER, SHELF, AND SLOPE (TEXAS)

Mixed Bedrock-Alluvial Valley

Alluvial Valley

Alluvial-Deltaic Plains

Shelf

Deep Basin

modern floodplain

highstand shoreline

shelf margin

NGDC topographic and bathymetric data
LONG PROFILE OF LOWER COLORADO RIVER, SHELF, AND SLOPE (TEXAS)

NGDC topographic and bathymetric data
Topography and Bathymetry

SL

mixed bedrock-alluvial valley

alluvial valley and delta plain

bedrock to alluvial transition

highstand shoreline

shelf margin

slope

Distance (km)
Topography and Bathymetry

Mixed bedrock-alluvial valley
Bedrock to alluvial transition
Transgressive and highstand strata
Lowstand river profile from subsurface mapping
Shelf margin

Distance (km)

Elevation (m)

\(\Delta SL \)
MENDOCINO TRIPLE JUNCTION: EEL RIVER
Topography and Bathymetry

Eel River

Distance (km)

120 100 80 60 40 20 0

0 -100 -200

Elevation (m)

SL

slope

shelf margin

highstand shelf

highstand shoreline

bedrock valley

bedrock to alluvial transition

A' A

highstand

shelf transition
MENDOCINO TRIPLE JUNCTION: EEL RIVER
Topography and Bathymetry

The diagram illustrates the topography and bathymetry of the Mendocino Triple Junction and the Eel River profile. The section A’-A shows transgressive and highstand strata, predicted lowstand river profile, shelf margin, bedrock valley, and bedrock to alluvial transition. The profile indicates a change in elevation from -200 meters to 0 meters over a distance of 120 km.
the shelf is an extension of the graded fluvial profile, and river long profiles are graded to shelf margin sea-level positions
• “Flint Law” \((S = -k A^y) \): an inverse power law relationship between drainage area \((A)\) and channel gradient \((S)\)
• applies within (moving downstream) or between drainage basins
SHELVES AS THE DOWNDIP EXTENSION OF THE FLUVIAL LONG PROFILE?

- All continents except Antarctica
- Temperate and tropical latitudes
- $n = 125$

$y = 0.83 \times 0.38 \quad r^2 = 0.53$

All shelf margins reside at similar depths, hence primary morphometric difference is shelf width

Shelf width and gradient scales to fluvial drainage basin area

areas from Syvitski and Milliman (2007)
SCALING OF SHELF WIDTH AND GRADIENT TO HINTERLAND DRAINAGE BASIN AREA

The Icehouse World -- High Amplitude, High Frequency Sea-Level Change
The Greenhouse World -- Very Low Amplitude, Low Frequency Sea-Level Change
WHAT ABOUT SEDIMENT SUPPLY AND ROUTING?
FLUVIAL SEDIMENT SUPPLY

Tectonics vs. Climate Change

Sediment Yield

unsteadiness (climate change)

background rates (based on relief/uplift)

ACTIVE OROGEN

PASSIVE MARGIN

Time (10^5 to 10^7 yrs)

~30%
PRESENT HIGHSTAND BOUNDARY CONDITIONS
Highstand Drainage Basins

Brazos River
Q = 850 m3/s
A = 117,500 km2
R = 1630 m
T = 19°C

Mississippi River

Colorado River
Q = 800 m3/s
A = 109,400 km2
R = 1360 m
T = 18°C
Lowstand Drainage Basins

Brazos River
- \(Q = 1473 \text{ m}^3/\text{s} \)
- \(A = 232,000 \text{ km}^2 \)
- \(R = 1750 \text{ m} \)
- \(T = 14^\circ \text{C} \)

Colorado River
- \(Q = 1080 \text{ m}^3/\text{s} \)
- \(A = 158,500 \text{ km}^2 \)
- \(R = 1480 \text{ m} \)
- \(T = 13^\circ \text{C} \)

Mississippi River
FIRST DRAFT HIGHSTAND SEDIMENT BUDGET: Colorado and Brazos Rivers, Texas

Guad. Lavaca Colorado Brazos Trinity Sabine

13 MT/yr 29 MT/yr

Highstand Shoreline

Submerged Shelf

Shelf Margin

Starved Slope and Deep Basin
FIRST DRAFT LOWSTAND SEDIMENT BUDGET: Colorado and Brazos Rivers, Texas

q_s decreases by $\sim 25\text{-}30\%$

- Guada. Lavaca
- Colorado
- Brazos
- Trinity
- Sabine

13 MT/yr (+3%)
34 MT/yr (+11%)

~63% sequestered in delta
~37% unaccounted for

Lowstand Shoreline
Slope and Deep Basin
RIVER LONG PROFILES, SHELVES, AND SEDIMENT DISPERSAL: ICEHOUSE WORLD

- Strong dichotomy in shelf widths. Wide shelves (>50 km) front large drainage basins, and narrow shelves (<<50 km) front small drainage basins.

- For most large river systems, shelf width limits sediment dispersal to the shelf margin during highstand. Sediment flux to the shelf margin is decoupled from climate controls, and coupled to shelf transit and SL change (also van der Zwan, 2002).

- Merging of drainages during lowstand increases point source sediment supply, but decreases number of point sources.

- Sediment supply to the shelf margin reflects how river systems respond to SL change in the lower part of their long profile.
Most constructional shelves are inherently very narrow, even during highstands.

Inherently narrow shelf widths will not limit sediment dispersal to the shelf margin during highstand.

For most systems, sediment flux to the shelf margin should be directly coupled to climate change (van der Zwan, 2002). The best explanation for “high-frequency” sequences?

Merging of drainages during lowstand does not seem likely due to limited high-frequency transit. More discrete point sources, but fewer “mega rivers”
A) Process classification of continental shelves, depending on the relative balance of “fair-weather” processes (oceanic currents, tides, and waves) with storms. Numbers refer to shelf regions discussed in this review (after Johnson and Baldwin, 1996).

A) A simplified version of the conceptual shelf process classification, which recognizes the similar depositional effects of tides and semi-permanent oceanic currents as one apex of the triangle (after Johnson and Baldwin, 1996; Galloway and Hobday, 1996). Numbers refer to shelf areas illustrated or discussed in this review.
References

