Click to view article in PDF
format.
Structural Style and Fracture Development in a Tight-Gas Sandstone Reservoir from the Canadian Foothills*
Patrick Fothergill1, Dragan Andjelkovic1, Lloyd Murray2, Steve Vadnai2, Paul MacKay3
Search and Discovery Article #40457 (2009)
Posted September 30, 2009
*Adapted from expanded abstract at AAPG Convention, Denver, Colorado, June 7-10, 2009
1Schlumberger, Calgary, AB, Canada (mailto: [email protected])
2Devon Canada Corporation, Calgary, AB, Canada
3General Reef Corporation, Calgary, AB, Canada
Deep, clastic gas reservoirs in the
foothills region of NE British Columbia and Western Alberta (Figure 1) are often located in the Jurassic to lower Cretaceous Nikanassin
and Cadomin formations. These formations can have very low porosities and
permeabilities, and typically only produce gas at commercial rates if they
contain a network of open natural fractures. Determining the orientation and
distribution of fractures down the wellbore is therefore critical for deciding
which zones to complete. Furthermore, understanding the relationship between
the natural fractures and the
structure
can be important for planning new well
locations and targeting the most productive areas of a
field
.
Although seismic sections can give a good
indication of the regional
setting
, they are often difficult to interpret in
these structurally complex areas, and they lack the resolution to identify
fractures. For these reasons, the best way to carry out detailed structural
modeling and quantitative fracture analysis on a wellbore scale is to use
borehole images.
|
|
The nine wells considered in this study were drilled with an oil-base mud (OBM) and logged using a combination of micro-resistivity and ultrasonic borehole images. The micro-resistivity tool, in general, responds well to the small-scale porosity changes associated with bed-boundaries or internal stratification. The ultrasonic tool is extremely sensitive to cracks or openings in the borehole wall (Figure 2), and is therefore particularly suitable for fracture identification. When combined, these tools can be used to carry out detailed structural analysis and to identify, characterize and quantify natural and drilling induced fractures.
However, the
borehole information is very localized and may not always reflect the
In the better
producing wells, the results show well formed hangingwall anticlines and
footwall synclines, developed above and below relatively low angle, SW
dipping thrusts. The interlimb angles are often tight, with stratigraphic
thinning along the frontlimb of the anticline. In some cases, the trend of
the
In all of the
wells, two significant fracture trends were observed: a primary NNE striking
fracture set, transverse to the
|
