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Abstract

Field data and recent experimental studies independently question long-held paradigms regarding the origin and time significance of
fluvially carved sequence boundaries as well as genetic relationships between these surfaces and the strata they bind. These field data
derive from an updip to downdip transect through the Cretaceous Dakota Group of the U.S. southern High Plains. The experimental
data derive from repeated basin-scale runs of sequence development during relative sea-level change simulated in the Jurassic Tank at
the University of Minnesota, St Anthony Falls. Both experimental and field data show that fluvial sand above sequence boundaries are
deposited coexistent with the carving of the underlying sequence boundary. The field data do this by inference from mapped cross-
cutting relationships within observed stratigraphy and the experimental data through scaled reproduction of the processes inferred and
products observed from the field. Both sources converge to reinforce assertions regarding sequence boundaries that require
readjustment of some commonly held views. Namely, surfaces commonly mapped as sequence-bounding unconformities were not
necessarily synchronously exposed, record no common age, and may not consistently separate older from younger strata. Also, fluvial
strata above sequence boundaries do not necessarily reflect passive burial of these surfaces during subsequent transgression. Instead
these strata may record co-generation of fluvial reservoir architecture and the underlying sequence-boundary over the full duration of
the transgressive/regressive cycle because of close genetic links between the two. Furthermore, valley incision and sequence-boundary
erosion need not reflect updip knickpoint migration from the shore;thus valleys and sequence-boundary continuity may commonly be
lost down depositional dip.
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Alternative Views for Common
Assumptions: Reassessing the Origin and
Significance of Sequence Boundaries
using Field and Flume

,qcs‘mp RF John Holbrook
A ) -ﬂ:a University of Texas at Arlington
Nikki Strong

@ University of Minnesota

\\\\\\\\\\\\\\\\\\




Fluvial Response to Base Level Change
and Generation of Sequences

Fluvial Systems Tract Models

Fluvial Aggradation __—""_~——" | ] ot =
TST e T e

(Wright and Marlats

=TT, s o = ==
Mature soil - Hydromorphic Channel  Floodplain
soil deposits  deposits

Fluvial Incision Fluvial strata Base Level

II IsoIaFe"d. high sinuosity fluvial channels High Low
o TR S

A

Sea Level Fall

Tidally-influenced fluvial deposits
I = el e

Valley incision S
Low-sinuodty
high-gradient

4’(.:“
(Shanley and McCabe, 1994) rivers

Time

Amalgamated fluvial channels

Sea Level

/




Fluvial Systems Tract Models

S == — = Upstream and Lateral?
R T - S -
TST | "o e e = T ™

Some Common Assumptions

(Wright and Marriott, 1993)

Mature soil  Hydromorphic Channel  Floodplain S~ _ . : 1qe
soil deposits  deposits Progressive Stacking in Sheets during Filling

with little Valley Modification

Fluvial strata Base Level
High Low

solated, hlgh sinuosity fluvial channels

| Stratigraphic Valley = Topographic Valley

Somewhat Synchronous Sequence Boundaries

Time

2 Subaerial Lowstand Surface of Erosion
Amalgamated fluvial channels /

VaIIey incision /
\’wlosny

high-gradient
(Shanley and McCabe, 1994) rivers

Incision during Falling Stage and Lowstand




Climate and Sediment Storage
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Rio Grande, NM
(Leeder and Mack, 2007)
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XES basin
(eXperimental EarthScape facility)
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XES basin
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Base Level Butters and Buttresses
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Cretaceous Dakota Group, US Western Interior
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Muddy Sandstone Architecture, Huerfano Canyon
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Alluvial Sequences on Colorado River,
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Sequence boundaries as time surfaces?
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Sequence Boundaries as Topographic Surfaces?
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Sequence Boundaries as Topographic Surfaces?
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Sequence Boundaries as Unconformities?
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Valley Incision by Knickpoint or Buffer?
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Implications for Rapid Flooding
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Implications for Rapid Flooding
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Conclusions

1) “Sequence boundaries” are time-transgressive composite
surfaces formed over the duration of the T/R cycle...therefore...

2) “Sequence boundaries” rarely equate to topographic surfaces
3) “Sequence Boundaries™ are not always unconformities

4) Valley erosion can initiate either in the proximal or distal region
of the basin ...Buffer vs. Knickpoint valleys

5) Sand sheets above “sequence boundaries” are prone to rapid
transgression
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