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Abstract

Outcropping rocks across southern Britain were exhumed from up to 2.5 km depth during Cenozoic times. This has been widely
attributed to Paleocene regional uplift resulting from igneous underplating related to the Iceland mantle plume. Our compilation of
paleothermal and compaction data reveal spatial and temporal patterns of exhumation showing little correspondence with the
postulated influence of underplating, instead being dominated by kilometer-scale variations across Cenozoic compressional structures,
which in several basins are demonstrably of Neogene age. We propose that crustal compression, due to plate boundary forces
transmitted into the plate interior, was the major cause of Cenozoic uplift in southern Britain, witnessing a high strength crust in
western Europe.
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Uplift and Exhumation of Atlantic (and other) Margins
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Presently outcropping rocks in southern British Isles have been
more deeply buried by up to 2.5 km of section removed during
Cenozoic exhumation

Exhumation has been primarily explained in terms of either
Igneous underplating related to Iceland mantle plume during
early Palaeogene or compression of crust by plate boundary
forces

We have complied 329 estimates of exhumation using AFTA,
vitrinite reflectance and sedimentary rock compaction methods

Our results demonstrate major short-wavelength variations in
exhumation over recognized Cenozoic compressional
structures and multiple phases of exhumation

We argue that crustal compression was the major cause of
Cenozoic exhumation across the southern British Isles

The short-wavelength signal due to crustal compression is
superimposed on more regional exhumation which is mainly
Neogene in age
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Wessex-Weald Basins

Located beyond the limit of recognized plume
activity (no Palaeogene igneous rocks)

Exhumation estimated from sonic velocity of
Jurassic Oxford Clay Formation and AFTA data
(Butler & Pullan 1990; Bray et al. 1998; Law
1998)

Exhumation began in mid-late Eocene and
culminated in Neogene and is localized over
major compressional structures

470 million barrels of oil are reservoired in the
Wytch Farm oll field — Europe’s largest onshore
oil field
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Sub-Quaternary geology
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Arreton-2 borehole (projected) Sandhills-1 borehole
Exhumation = 1.84 km Exhumation = 0.75 km
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Southern Irish Sea

Located near the postulated focus of underplating related
exhumation; should reveal evidence for substantial
Palaeocene exhumation if controlled by underplating

Over 1 km of Palaeogene-Neogene sediments preserved
In these basins, allowing effects of Neogene exhumation
to be separated from those of earlier events

AFTA data from Mochras borehole provide no evidence for
early Palaeogene cooling (Holford et al. 2005 JGSL)

Oligocene-Miocene section at Mochras Is overcompacted,
witnessing ~1.5 km of Neogene exhumation (Holford et al.
2005 JGSL)
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Southern Irish Sea

Located near the postulated focus of underplating related
exhumation; should reveal evidence for substantial Palaeocene
exhumation if controlled by underplating

Over 1 km of Palaeogene-Neogene sediments preserved in these
basins, allowing effects of Neogene exhumation to be separated from
those of earlier events

AFTA data from Mochras borehole provide no evidence for early
Palaeogene cooling (Holford et al. 2005 JGSL)

Oligocene-Miocene section at Mochras is overcompacted, withessing
~1.5 km of Neogene exhumation (Holford et al. 2005 JGSL)

Palaeogene-Neogene sequence of St George’s Channel Basin
shows significant dip demonstrating major post-Palaeogene
deformation and exhumation

Timing and style of exhumation is therefore inconsistent with early
Palaeogene underplating
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Line-length restoration of
Base Middle Jurassic horizon
indicates ~15% shortening
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What about the East Irish Sea Basin?
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The cryptic signature of sedimentary basin
Inversion

Wessex-Weald Basins

Arreton-2 borehole (projected)
Exhumation = 1.84 km

Sandhills-1 borehole
Exhumation = 0.75 km
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 The EISB has been deeply

eroded (up to 3.3 km of post-
Upper Triassic strata
removed)

Some evidence for crustal
shortening has been lost
because erosion has cut
below the null point

There is only evidence for the
earlier phase of extension

Less deeply eroded basins
(e.g. Wessex Weald) contain
abundant evidence for
shortening because, unlike the
EISB, the postrift successions
have only been partially
removed
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Correlation of exhumation with Atlantic Margin
unconformities and plate boundary deformation

ATLANTIC MARGIN

REGIONAL TECTONICS

SEDIMENTARY CLIMATE SEALEVEL
AND PLATE BOUNDARY EVENTS
ARCHITECTURE 5"°0 (%)
13 s e = 1 | | | I
;,-% A A EE % rRo oo 100 200 300 Onset of
a[5] bonaasd IPU ' e £ "
I i i EET + LORG 1 British Isles
ol I3 : £= g o Term | Exhumation
5| |i 2 C
a1 B = g gn urve i
Boll [ 8 = 373k 1S | L4 5l Episodes
% Rl5 Tt S - ﬁE - '*EE —Ug = 5!—1 Eo N
ofa] o fiMu o 32 52l E5 ) 4SS | £ 238
2 HR ER T I N 20-15 Ma
41 g el o W3 s s :
1 K=l = £ = me
Hal ¢3| 3 | 58 3=l ZE 1 i g
| @ p~~MBNU | @ 8 £ fs -
oli| [ - 25| a 6| 5% aw i d
als] S 5" 5= W - =
el § |2 S, .38 ;
=lalo .“ L] = o & i; k-3 = E
Ol &l @ e o = c® S E :LE B
HE| o : oliz it nist r 40-25 Ma
#| 3 prnenf UEU A A i ifs Sm
Slm [ g5 |5° o e &8
H] = S 2| =
[ 1] -— .E L - — — 4] E
A === 2 | 2
il e = g | £
B = e s i
slol 8 [ 21« 2 g
of | |5 = s g 3
a —— - = =T ‘1e]
i E= " £y iE 4+ il
| LEU 2~ 2 HE 55 4 . 52
gy (i} =
o[il = ® g22 20 |V &2 A 65-55 M
HH D s = s8% sz |34 < 2§ s
gl = S 5°F g5 |geV S 8 g
$H{  f{BPU a 5 (B3 24 25
= ] =
&l v £3
. Ew
1910 'of sea-floor spreading "

from Iberia since ~120 Ma

=l Crustal separation
4w |ncrease in spreading rates
+ Change in spreading direction

11 1
0 4 8 12

Temperature (°C)




Plate boundary forces Evolving patterns
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Conclusions

Our data demonstrate major short-wavelength variations in
exhumation (i.e. ~1 km variation over ~10 km distance) and
multiple phases of exhumation

In many regions timing of exhumation post-dates timing of
plume activity, with Neogene exhumation especially significant

Cenozoic compressional structures increasingly recognized in
northern Britain and along the Atlantic Margin

Neither the distribution nor chronology of exhumation supports
underplating as the major cause of exhumation

Crustal compression due to plate boundary stresses originating
from mid-Atlantic ridge spreading and Alpine collision
transmitted ~1000 km into the plate interior was the major
cause of Cenozoic exhumation

Short-wavelength exhumation is superimposed on regional
exhumation of primarily Neogene age — this may be related to
lithospheric shortening, mantle convection, but not the Iceland
mantle plume
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