Abstract

Past changes in CO₂ and temperature can illuminate the potential future effect of continuing CO₂ rise on global mean temperatures. Data from Antarctic ice cores have provided records of surface air temperature and inferred global CO₂ concentrations back to about 740,000 years ago. Surface air temperatures based on the H and O isotopic composition of ice have varied by about 8-12°C on orbital timescales (10,000 to 100,000 years); the longest current records indicate eight glacial-interglacial cycles back to about 740 ka (kiloyears B.P.). Associated with these cycles are ~80-120 ppmv changes in CO₂ concentrations based on measurements of trapped air bubbles. The most rapid changes occurred in less than 10,000 years at glacial terminations, termed Terminations 1-8 at ca. 15, 130, 240, 325, 420, 515, 625, and 730 ka, respectively. These sharp Terminations provide an important test of potential relationships between Antarctic air temperature and global CO₂ concentrations. However, determination of lead-lag relationships is complicated by the fact that air diffuses in compacting snow long after the snow is deposited, leading to significant age differences between air and ice at a given level in an ice core. The so-called “gas age - ice age difference” ranges from about 500 to 6000 years, depending on snow accumulation and compaction rates, with uncertainty on the order of 1000 years. Specifically, this complicates determining the timing of air temperature increase and CO₂ rise because the former is derived from measurements on ice and the latter from trapped air. After constraining the “gas age - ice age difference” several studies have determined that initial Antarctic air temperature increase preceded CO₂ rise on glacial terminations, typically by about 600 to 3000 years. One study used the δ⁴⁰Ar isotopic temperature proxy, measured on the same air samples as CO₂, and found a lead of 800±200 years at Termination 3. These observations suggest that CO₂ rise did not trigger temperature increase. However, these same studies show that approximately 80% of deglacial warming was synchronous with CO₂ rise. Furthermore, sensitivity studies indicate that the magnitude of deglacial warming in response to orbital insolation changes requires substantial feedback from greenhouse gases. Scaling these results to make predictions about the next century is difficult, but past climate change is consistent with CO₂ exerting a strong positive feedback on surface temperature.

References

Relationships between CO$_2$ and temperature in glacial-interglacial transitions of the past 800,000 years

Benjamin P. Flower
Outline

• Antarctic ice coring

• Glacial-interglacial Antarctic ice core records

• CO$_2$ and temperature phase relations during glacial terminations
1) Antarctic ice coring
Ice sheet flow

- Age at depth is based on glaciological flow model

Ruddiman 2001
Sealing Air Bubbles in Ice

- Firn depth >50 m
- Ice-gas age (Δt) by densification model

Ruddiman 2001
Extending instrumental records of CO$_2$
2) Glacial-interglacial Antarctic ice core records
Vostok CO$_2$ record

- glacial-interglacial range \sim190-280 ppmv (Petit et al., 1999)
- May 2009: \sim390 ppmv

http://www.ncdc.noaa.gov/paleo/icecore/antarctica/vostok/vostok_isotope.html
Vostok δD and Δ Temperature

- Δ Temperature is estimated based on a spatial calibration
• δD represents regional Antarctic air temperature
• CO_2 represents global atmospheric concentrations
Phasing of CO$_2$ and temperature

“Considering the large gas-age/ice-age uncertainty..., we feel that it is premature to infer the sign of the phase relationship between CO$_2$ and temperature at the start of terminations.”

3) CO$_2$ and temperature phase relations during glacial terminations

![Graph showing CO$_2$ and temperature phase relations during glacial terminations. The graph includes δD (% VSMOW) and CO$_2$ (ppmv) axes, with Age (ka) on the x-axis.]
Dome C
Termination 1

- CO$_2$ rises from 189 to 265 ppmv (76 \(\pm \) 1 ppmv)
- average rate: 20 ppmv/k.y.; max. rate: 30 ppmv/k.y. (<25x 20th century rate)
- CO$_2$ tracks temperature ($r = 0.85$)

Monnin et al., 2001 *Science* 291: 112 (Dome C)
Termination 1

- Ice-gas age (Δt) is 5500 y during LGM (+10%)
- CO$_2$ rise lags onset of Antarctic warming by 800 ± 600 y
- Lag/common duration = 800/6000 y (13%)

Monnin et al., 2001 *Science* 291: 112 (Dome C)
Relevance to greenhouse warming

“The estimated time lag... does not cast doubt on the importance of CO₂ as an amplification factor of the temperature increase.”

Monnin et al., 2001 Science 291: 112 (Dome C)
Circumventing the ice age – gas age difference

Ruddiman 2001
Termination 3

- Ar isotopes affected by gravitational and thermal fractionation
- $\delta^{40}\text{Ar}$ is used as temperature proxy in gas phase ($r = 0.85$)
- ice-gas age (Δt) is 4100 ± 250 y

Caillon et al., 2003
Science 299: 1728 (Vostok)
Termination 3

- CO$_2$ lags temperature increase by 800 ± 200 y

- Lag/common duration = $800/6000$ y (13%)

- “CO$_2$ plays... a key role in amplifying the initial orbital forcing.”

Caillon et al., 2003
Science 299: 1728 (Vostok)
Interglacial-glacial changes in carbon

1 Gigaton = 10^{15} grams; ocean C = ~60 ACM

- Lag/common duration of ~800/6000 is expected for deep ocean release of CO$_2$ during terminations
Dome C CO₂ and ΔTemperature

Terminations 1-5

Monnin et al., 2001 (Dome C)
Lüthi et al., 2008
Siegenthaler et al., 2005;
Lüthi et al. 2008 (EDC3)
Terminations 6-9

600\pm500/9800
Siegenthaler et al., 2005;
Lüthi et al. 2008 (EDC3)

1200\pm500/14300

3000\pm500/17300
Lüthi et al., 2008 (EDC3)

300\pm500/9800
Relevance to greenhouse warming

“Compared to the time scales of glacial cycles, these time lags are small and do not question the important role of CO$_2$ as an amplifier of the large temperature rise during deglaciations.”

(Lüthi et al., 2008)
Summary

• CO$_2$ fluctuated between ~180 and 300 ppmv throughout the past 800 ky until ca. 1850

• CO$_2$ has tracked Antarctic air temperature, including the saw-tooth 100 ky cycle

• CO$_2$ lags Antarctic temperature by 300 to 3,000 years, but the lag depends on the gas/ice age difference

• Furthermore, the lag is small relative to the common duration (typically 800/6000 y), so CO$_2$ may not be a trigger for climate change, but an amplifier