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Abstract 
 
The burning of fossil fuels is injecting CO2 into the biosphere (atmosphere/ocean/biomass) at rates that may meet or exceed any that have 
occurred in Earth history. There is no doubt that this is a significant perturbation to the carbon cycle. The carbon cycle has already 
responded: about half of the carbon emitted has been taken up by the ocean (demonstrably driving down ocean pH and carbonate saturation 
states) and terrestrial biota. Projections into the future demonstrate that the ability of these sinks to accommodate fossil fuel CO2 will be 
reduced, leading to an increase in the airborne fraction of CO2.  
 
Fossil-fuel burning is an external forcing of the carbon cycle. In contrast, the carbon cycle variations on, for example, glacial/interglacial 
timescales are internal responses (feedbacks) to externally driven variations in insolation (Milankovitch cycles). In feedback loops, cause 
and effect become meaningless: causes become effects and vice versa. Thus, the search for leads and lags between temperature and CO2 in 
ice-core records is of limited utility in determining the extent to which CO2 is a “climate driver.” More promising is the investigation of the 
Paleocene-Eocene Thermal Maximum (PETM) “supergreenhouse” event 55 million years ago. The combination of a sizeable negative 
carbon isotope excursion, marked global warming with polar amplification, and extensive seafloor carbonate dissolution provides a strong 
constraint on the source, magnitude, and rate of carbon addition that drove this climate perturbation. Based on numerical modeling results 
using an Earth system model of intermediate complexity, the source was fossil carbon, emitted over a few thousand years, with a total 
magnitude of ~7000 Pg. In other words, the rate of CO2 emission was somewhat slower, but the magnitude somewhat larger, than the 
projected rate of fossil-fuel burning under “business-as-usual” scenarios. Sensitivity analysis reveals that the rate of addition is critical to the 
oceanic response: slow additions (less than 1 Pg carbon per year) lead to deep-ocean acidification, but surface waters remain supersaturated 
with respect to CaCO3. Faster additions (including current and projected fossil-fuel burning rates) lead to surface-water acidification as well. 
Thus, the rather muted biotic response to the PETM (benthic foraminiferal extinctions, ecosystem migrations on land) may underestimate the 
biotic response to future fossil-fuel burning, both on land and in the ocean.  
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Conclusions

• Glacial-interglacial atmospheric CO2
fluctuations part of internal feedback system

• External forcing of carbon cycle (volcanoes, 
fossil fuel burning) leads to atmospheric CO2
buildup, warming, “acidification”

• Rates matter!
• Cliffs of Dover confirm, rather than challenge, 

CO2 – climate connection




