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Abstract

The burning of fossil fuels is injecting CO, into the biosphere (atmosphere/ocean/biomass) at rates that may meet or exceed any that have
occurred in Earth history. There is no doubt that this is a significant perturbation to the carbon cycle. The carbon cycle has already
responded: about half of the carbon emitted has been taken up by the ocean (demonstrably driving down ocean pH and carbonate saturation
states) and terrestrial biota. Projections into the future demonstrate that the ability of these sinks to accommodate fossil fuel CO, will be
reduced, leading to an increase in the airborne fraction of CO,.

Fossil-fuel burning is an external forcing of the carbon cycle. In contrast, the carbon cycle variations on, for example, glacial/interglacial
timescales are internal responses (feedbacks) to externally driven variations in insolation (Milankovitch cycles). In feedback loops, cause
and effect become meaningless: causes become effects and vice versa. Thus, the search for leads and lags between temperature and CO; in
ice-core records is of limited utility in determining the extent to which CO; is a “climate driver.” More promising is the investigation of the
Paleocene-Eocene Thermal Maximum (PETM) “supergreenhouse” event 55 million years ago. The combination of a sizeable negative
carbon isotope excursion, marked global warming with polar amplification, and extensive seafloor carbonate dissolution provides a strong
constraint on the source, magnitude, and rate of carbon addition that drove this climate perturbation. Based on numerical modeling results
using an Earth system model of intermediate complexity, the source was fossil carbon, emitted over a few thousand years, with a total
magnitude of ~7000 Pg. In other words, the rate of CO, emission was somewhat slower, but the magnitude somewhat larger, than the
projected rate of fossil-fuel burning under “business-as-usual” scenarios. Sensitivity analysis reveals that the rate of addition is critical to the
oceanic response: slow additions (less than 1 Pg carbon per year) lead to deep-ocean acidification, but surface waters remain supersaturated
with respect to CaCOs3. Faster additions (including current and projected fossil-fuel burning rates) lead to surface-water acidification as well.
Thus, the rather muted biotic response to the PETM (benthic foraminiferal extinctions, ecosystem migrations on land) may underestimate the
biotic response to future fossil-fuel burning, both on land and in the ocean.
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A composite CO, record over six and a half ice age cycles,
back to 650,000 years B.P.
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Carbon redistributed internally
in response to
climate feedbacks
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Fossil Fuel CO,Uptake by Ocean
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Polar temperatures for the last 65 million years
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Digital core photos and weight % CaCO, content plotted versus meters of
composite depth (MCD) across the PETM on Walvis Ridge
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Bulk sediment 83C and weight % carbonate content for ODP sites 1262, 1263, 1265, 1266, and 1267
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Bulk sediment 83C and weight % carbonate content for ODP sites 1262, 1263, 1265, 1266, and 1267
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CaCO; wt% model vs. data (circles)
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10 ky addition of 7000 Gtons C works for PETM,

but slower than fossil fuel burning . ..
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Corals and other calcifiers are wimps!
(Biosphere 2 Study)
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Warmer, wetter world
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Conclusions

Glacial-interglacial atmospheric CO,
fluctuations part of internal feedback system

External forcing of carbon cycle (volcanoes,
fossil fuel burning) leads to atmospheric CO,
buildup, warming, “acidification”

Rates matter!

Cliffs of Dover confirm, rather than challenge,
CO, — climate connection





