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Abstract

Earth acquired essentially its entire carbon inventory very early. Most carbon arrived as volatile components trapped within planetesimals
that formed the planet. As Earth approached its ultimate size, the greater energy associated with large impacts caused substantial amounts of
volatiles to be lost to space. Because the redox state of the upper mantle has been relatively constant for at least the past 3.7 billion years,
CO, and CO3%species have dominated mantle carbon inventories since the early Archean. The cycling of carbon between its reservoirs in
the atmosphere, ocean, crust, and mantle has responded to major long-term evolutionary trends; e.g., increasing solar luminosity, declining
sizes and rates of impacts, declining radiogenic heat flow, and the stabilization of large continents. The major changes have occurred
principally in the relative sizes of these carbon reservoirs and in the carbon fluxes that linked them. Today, rates of carbon exchange
between the mantle and crust are slower (~10%) than global sedimentary carbon cycling which, in turn, is much slower (~0.1%) than global
biological carbon cycling. The hotter Archean mantle must have influenced significantly the inventory of carbon in the crust, oceans, and
atmosphere. Higher Archean rates of crustal production sustained higher mantle carbon outgassing rates. A hotter upper mantle retained any
subducted carbon with greater difficulty. All of this indicates that the Archean crustal carbon inventory actually might have exceeded the
modern crustal inventory. The enormous size of the mantle, together with more vigorous Archean mantle-crust exchange, probably allowed
the mantle to control crustal volatile inventories and constrain the redox state of surface environments to a greater extent than it does today.
This control weakened over time, following the decay of mantle radionuclides and declining heat flow. Also, the tectonic reworking of
ancient crust during the Late Archean and Early Proterozoic led to more stable continents with more extensive stable shallow marine
platforms that became major sites for the deposition and long-term preservation of carbonates and organic carbon. The rise of pervasive
photosynthetic microbial communities transformed life into a major player in carbon cycling. Biological productivity enhanced sedimentary
organic carbon burial rates; it contributed to the oxidation of the oceans and atmosphere, and ultimately it helped to modulate atmospheric
CO; levels.
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Origins and Cycling of CO,, on Earth
During the Archean and Proterozoic Eons
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Biogeochemical Carbon Cycles
Present-Day Fluxes, x 1012 Moles per Year
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Estimating the flux
of mantle carbon
to the surface
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Earth's Carbon Budget
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Relative Abundance vs. Sun (g/g)
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Temperature (K)

Hadean Impacts, Volatiles and Temperature
Zahnle et al., 2007
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Evolution of Earth's Early Environment
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C subduction, Recent vs Archean (Des Marais, 1984)
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Fig. 1. Selected reactions involving calcite-quartz assemblages situated on the upper
surface of a subducted slab, modified from Figures 8 and 9 of Huang et al. [1980].
Heavy lines delineate transformations between the following: CC - calcite, CD,, L -
liquid, Qz - Quartz, V - Vapor, and Wo - wollastonite, Ca(Si0O,). The two heavy curved
lines correspond to anhydrous conditions; the two heavy straight lines correspond to
reactions occurring in the presence of C0,-H,0 mixtures. The straight line shown for
CC+Qz+V = Wo assumes Pn.gy = 15 kbar. The straight line for Wo+V = L assumes Py,q = 15
kbar. The two solid light lines are estimates of the present~day temperature along the



Biogeochemical C Cycles Before Oxygenic Photosynthesis?
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Anoxygenic Photosynthesis in an Anoxic World
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Evolution of Earth's Early Environment
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The Carbonate-Silicate Cycle
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History of Earth's Atmospheric Carbon Dioxide Levels

1 O Ocean-covered Earth 1 04
Huronian glaciation
1 (5 to 20°C)
Late Precambrian 1 0 3
glaciation
101 (5 to 20°C)
102

30% Solar flux
1 0'2 reduction (0°C) 4
10
103
Terrestrial 1
1 0.4 C3 Photosynthesis

CO, partial pressure (bar)
CO> concentration (PAL)

4.5 35 25 1.5 0.5
Time before present (Ga)

Kasting




Productivity, Organic Burial, and Oxidant Reservoirs
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Isotopic Mass Balance of Crustal Carbon Reservoirs
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The C Cycle during the Archean and Proterozoic

 Mantle-crust exchange dominated the Archean
C cycles

— Substantial C fluxes and crustal reservoirs
— Redox control
— Global biological productivity
— Hydrogen escape to space
e Proterozoic trends altered the C cycles
— Declining geothermal fluxes
— Increasing solar luminosity

— Oxygenic photosynthesis
— H escape to space
— Continents and tectonics
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Carbon Isotopic Record
In Sedimentary Carbonates and Organic Matter
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