Click to view article in PDF format
Tar-Mat Samples as Timing Indicators of Episodic Fill-and-Spill Oil
Migration
History in an Albian Channel-Splay
Complex from the Outeniqua(!) Petroleum System, South Africa*
Christopher P. Davies1
Search and Discovery Article #10190 (2009)
Posted April 21, 2009
*Adapted from extended abstract/poster presentation at AAPG International Conference and Exhibition, Cape Town, South Africa, October 26-29, 2008
1PetroSA, Parow, South Africa ([email protected])
Biomarker analyses of a series of oil and tar-bearing sandstone samples from an Albian shelf-margin channel-splay complex in the Bredasdorp Basin and source rock samples from the immediately subjacent Aptian deep marine shales show a time-related sequence of fill-and-spill along the channel. Optical and pyrolysis analyses from many samples of the source rock both locally and regionally show a maturation history that fits the known multiple-event basin heat flow and is similar to the calculated oil maturities.
As oil was generated from the kerogen, the shale porosity gradually became charged with oil but this oil was only actively
expelled from the shale once the threshold oil saturation was exceeded; this threshold oil volume can be estimated
from the available source rock analyses. Comparing the known rates of maturation with the calculated oil saturation
potential of the shale suggests a punctuated oil
expulsion
and
migration
history that broadly matches the fill increments
evident from multiple tar-mats in the field.
This compelling synchroneity suggests a complete ‘source-to-reservoir fill’ sequence passing into and through the channel system in which tarmats represent previous oil fills and live oil represents the latest fill(s). The volume of oil shown to be lost from the studied reservoir before the present fill is probably of similar volume to that currently trapped, namely a few tens of MMbbl, constituting an updip target for future drilling.
|
Regional Geology
The Bredasdorp Basin is the westernmost of a series of five basins located on the southern tip of Africa, offshore South Africa, all formed during the Mesozoic pull-apart of Africa and South America (Figure 1). Only the early post-rift strata, namely post-Hauterivian, are discussed here as they host both the source and reservoir rocks (Figure 2).
Shortly after the Barremian opening of the basin the Aptian regional anoxic event occurred. This is believed to result from the colonisation of previously exposed land surface and higher than normal atmospheric and oceanic temperatures, allowing for massive organic growth and the ensuing deep basin anoxia. The anoxia resulted in regional deposition of Type 2 organic matter away from the newly transgressed shelf areas; a good example is seen at the DSDP361 location SW of Cape Town. It is this regionally extensive shale that is the source of almost all the oil discovered to date off South Africa. Closely following this event, a period of regional uplift and landward erosion occurred culminating in mid-Albian sandstone deposition in basins around South Africa, particularly the Bredasdorp Basin. These locally extensive marine sandstones take the form of stacked anastomosing channel and fan lobe deposition off the palaeo-shelf into the central part of the basin. They are the main oil productive interval in the basin.
HotspotsApart from expected thermal decay effects consequent on the pull-apart events, an unusual feature of Southern African geology is that it has been affected by heating and uplift due to hotspot transits in two separate periods. The first, and more important, is marked by the Bouvet (Shona) hotspot, reported by Duncan (1981) to have transited the Bredasdorp Basin at ~ 65-55Ma (Figure 3) bringing extensive intrusions of calc-alkaline igneous rocks to the easternmost and westernmost Bredasdorp Basin over that period. Although the area of discussion lies between the two igneous centres, the heating effects of the Bouvet/Shona hotspot are widespread due to the underpinning of the basin by the hotspot head, so the whole basin was affected. The second hotspot event is that currently building under southern Africa, the so-called African Superswell of Nyblade and Robinson (1994). This hotspot seems to have initiated at ~10Ma and is still growing. Physical effects of this can be seen in the recently elevated hinterland of southern Africa and regional erosion along the coastline during the last ~10Ma.
Thermal Maturation
Optical and pyrolysis maturity data from ~4000 Vitrinite Reflectance samples from 99 wells and ~22000 Rock-Eval samples from 143 wells in the basin were used to construct the heat flow model using the Basinmod Easy Ro% method. Increases in heat flow expected from such thermal events based on global sources of data were applied to the model in order to match calculated with measured Ro% (Figure 4). These data are dealt with in detail in Davies (1997) and are not addressed further here other than to reiterate the conclusions, namely that modelling based on these features confirm the timing and likely reflectance levels of expelled oil.
The Bredasdorp Basin hosts significant volumes of hydrocarbons, to date some 3Tcf and 100MMbbl recoverable gas, condensate and oil have been discovered and are in production. Much of the oil and gas was generated by the Aptian source although an earlier wet gas prone source in the Barremian strata seems to be responsible for regional gas-condensate generation, some of which is seen in the deeper wells in the study area.
In this paper, discussion centres on the low sulphur, ~38deg API Aptian oil with wet gas and the Barremian gas-condensate that are found reservoired in a continuous sequence of stacked channel sandstones between the E-CR and E-CB structures in the south-eastern part of the Bredasdorp Basin (Figure 1). More specifically it focuses on the genesis of the unusual intersections of Albian reservoir sandstones which contain multiple millimetre-to-centimetre-thick ‘wavy’ tar-mats (so-called as they comprise up to 74% asphalt and barely 1% saturates) and deep residual oils. These are considered to have been deposited at multiple OWC’s, either by compositional segregation or bacterial activity
This paper addresses the generation and punctuated
Punctuated Oil
|
