
Effects of Steam-Induced Diagenesis on Heavy-Oil Production in Miocene-Pleistocene Sands from Kern 
River Oil Field, California* 

 
Robert A. Horton, Jr.1, Larry Knauer3, Dawne Pennell2, and Kay Coodey1 

 
Search and Discovery Article #20076 (2009) 

Posted September 30, 2009 
 
*Adapted from oral presentation at AAPG Annual Convention, Denver, Colorado, June 7-10, 2009 
 
1Grants, Research, and Sponsored Programs, California State University at Bakersfield, Bakersfield, CA (rhorton@csub.edu; s_pomai@yahoo.com)  
2Aera Energgy LLC, Bakersfield, CA (dapennell@aeraenergy.com)  
3Chevron U.S.A. Inc, Bakersfield, CA (larryknauer@chevron.com) 
 

Abstract 
 
Kern River oil field in Kern County, California was discovered in 1899. Although over two-billion barrels of oil have been produced 
from this field, substantial reserves remain. The reservoir consists of braided alluvial sands and gravels of the Kern River Formation 
(Miocene-Pleistocene). Currently heavy oil (12° - 13° API) is produced using steam injection. Steam injection typically results in 
good production from well sorted medium to very coarse sands, but less well sorted sands and gravels are commonly bypassed and 
remain unproduced, with residual oil saturations 10-30 saturation units higher than the adjacent rock despite heating to temperatures of 
220° F and greater. This study examined mineralogy and pore geometry in sands that had not been heated, sands that had been heated 
but were not drained, and sands that had been swept of hydrocarbons by steam. The sands of the Kern River Formation are composed 
predominantly of quartz, K-feldspars (orthoclase and microcline), plagioclase (andesine-oligoclase), microphanerites of granitic 
composition, and minor biotite (1-3%), reflecting their source from granites in the southern Sierra Nevada. Clays of detrital and 
authigenic origin typically make up 5-13% of the rocks. The clays are dominated by mixed illite/smectite with 80-90% smectite 
layers; there is also minor kaolinite. Samples that have been heated but not drained of oil are generally similar to unheated samples. 
Introduction of steam into the rocks as the sands were drained of oil resulted in the breaking apart of microphanerites, dissolution of 
feldspars, and a slight increase in the amount of clays; notably there is no significant change in total porosity. Texturally there are 
significant differences in the distribution of clays and the geometry of the pore networks between unsteamed sands and those that have 
been swept of hydrocarbons. The disintegration of microphanerites and subsequent rotation of the grain fragments has changed the 
sorting and reduced pore-throat diameters. Recrystallization and precipitation of mixed illite/smectite has resulted in an increase in the 
amount of pore-filling clay cements, including as bridges across pore throats that may have restricted fluid flow. The extent to which 
this may have affected subsequent production is under investigation. 

Copyright © AAPG. Serial rights given by author.  For all other rights contact author directly.
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DEPOSITIONAL SYSTEMS
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BYPASSED OIL ZONES Much of the bypassed oil in this 
area is in sands that exhibit 
gradually decreasing resistivitygradually decreasing resistivity 
log character toward their bases.
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CAN THESE ZONES BE 
PRODUCED?

• How are bypassed zones different 
from productive zones?from productive zones? 

• How does steam affect reservoir 
properties? 
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How are bypassed zones different 
from productive zones?

• Productive zones are much better 
sorted than bypassed zones.

• Productive zones have more open 
pore networks than bypassedpore networks than bypassed 
zones.
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DISSOLVED FELDSPARS in GRANITIC ROCK FRAGMENTS
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Percentage of Clays vs DepthPercentage of Clays vs Depth
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CONCLUSIONSCONCLUSIONS

• Bypassed oil resides in sediments 
with gradually decreasingwith gradually decreasing 
resistivity curves at their bases

• The decreasing resistivity curves reflect 
a change from moderately sorted sandsa change from moderately sorted sands 
to poorly sorted gravels with less open 
pore networks



CONCLUSIONSCONCLUSIONS
• Heating during steam injection resulted in 

dissolution of feldspars, decomposition 
of rock fragments, changes in clay o oc ag e ts, c a ges c ay
compositions, and precipitation of pore-
filling mixed-layer illite/smectitefilling mixed-layer illite/smectite

• Precipitation of mixed-layer illite/smectite 
may have reduced permeability therebymay have reduced permeability thereby 
resulting in diminished production



CONCLUSIONSCONCLUSIONS
• This shows the usefulness of obtaining 

cores and studying the rocks to augment 
well logs and other geophysical or e ogs a d ot e geop ys ca o
petrophysical data when characterizing a 
reservoir and planning an EOR programreservoir and planning an EOR program 




