Challenges in Reservoir Characterization and Original Oil-in-Place Estimation in the Presence of Very Fine Bedding:
An Example from a Mixed Clastic-Carbonate Reservoir from Block 0, Offshore Angola

Daniel M. Kiala¹, Steve Jenkins¹,², Antonio M. Ingles¹,³, Yahya Fitor¹, and Julia Correia¹

Search and Discovery Article #20073 (2009)
Posted May 15, 2009

*Adapted from extended abstract and poster prepared for AAPG International Conference and Exhibition, Cape Town, South Africa, October 26-29, 2008

¹Chevron Africa/Latin America Exploration & Production, Luanda, Angola
²Chevron Corporation, San Ramon, California (sdje@chevron.com)
³Chevron, Bellaire, Texas (inga@chevron.com)

Abstract

The Vuko Mesa reservoir is a finely laminated mixed clastic carbonate sequence deposited in a marine shelf environment. Reservoir quality varies rapidly vertically due to the influence of minor transgressive and regressive cycles. Mesa stratigraphic sequences are intercalated with the deposits of fine-grained sandstone and siltstone to very fine-grained and shaly sediments with argillaceous markers. The best producing reservoir intervals are typically 1-2 ft thick in the Mesa reservoir.

The presence of very fine bedding poses a serious challenge to formation evaluation and the estimation of oil volumes and oil recovery. Reservoir units on the order of several inches thick are below the resolution of conventional wireline logs. This leads to difficulties in estimating reservoir properties that are fundamental to oil recovery. Net to gross can be overestimated in this case, along with under-estimation of reservoir porosity and over-estimation of water saturation in the dynamic reservoir model. This problem has recently been addressed by a field cross-functional team of reservoir engineers and earth scientists working to integrate available static and dynamic data.

At the Vuko Mesa Field, core data was reviewed to determine a core-based net to gross ratio. Core data was used to develop new transforms of wireline porosity and permeability processing using the GEOLOG program. Enhanced Vertical Resolution (EVR) processing of the raw wireline field tapes was also conducted in an attempt to obtain net to gross ratios consistent with core-based estimates. These data have been integrated into a new three dimensional reservoir model to improve waterflood management of Vuko field.

Copyright © AAPG. Serial rights given by author. For all other rights contact author directly.
Mesa Stratigraphy

- The Mesa reservoir, of the Upper Cretaceous Iabe Formation, is a shallow marine system composed of mixed clastic-carbonates.
- The lithology is dominated by siltstones and fine- to very fine-grained sandstones.
- Reservoir consists of thinly interbedded dolomitic limestones/sandstones YFG Sandstone, Sandy siltstone and muddy siltstone with calcite cement.
- Deposited in a middle to outer shelf environment with relatively low primary porosities (3 to 30 %) and permeabilities (.01 to 100 md).
- Best reservoir is the M2 package.
- Difficult to resolve intermediate horizons in the seismic. Overall sediments coarsen upwards within facies, not by a significant increase in the grain size of the coarse elements, but rather by a decrease in the amount of silt plus mud plus carbonate mud, this indicating the occurrence of shoaling.
- Absence of coarser sediment suggests that the area was far from a siliciclastic source.
- Shales of the flooding marine units act as Vertical Seals over the tops of the reservoirs, reducing the Vertical Permeability.
- Other considerations: - diagenesis (dolomitization, cementation)
- Anticlinal horst block, rolling into fault. Sands laterally continuous, with sheet-like distributions (storm deposits).

Vuko Mesa Vertical compartments

- SPT data indicate that there are 3 pressure regimes in Mesa reservoir:
 - M2a-M2b low pressure zone, production depleted;
 - M1a-M2 high pressure zone, much less production from this zone;
 - M3a-M3c higher pressure zone, more pressure support

Structure

- Seismic Section of Iabe Formation with Mesa reservoir. Anticlinal Horst Fault-Block. Interior Faults cause varying dip.
- M1 is the top structure of Mesa reservoir. The structure is cut by numerous faults.

Abstract

- The Vuko Mesa reservoir is a finely laminated mixed clastic carbonate sequence deposited in a marine shelf environment. Reservoir quality varies rapidly vertically due to the influence of minor transgressive and regressive cycles. Mesa stratigraphic sequences are intercalated with the deposits of fine-grained sandstone and siltstone to very fine-grained and shaly sediments with argillaceous markers. The best producing reservoir intervals are typically 1-2 ft thick in the Mesa reservoir.
- The presence of very fine bedding poses a serious challenge to formation evaluation, and to the estimation of oil volumes and oil recovery. Reservoir consists of thinly interbedded dolomitic limestones/sandstones VFG Sandstone, Sandy siltstone and muddy siltstone with calcite cement. Deposited in a middle to outer shelf environment with relatively low primary porosities (3 to 30 %) and permeabilities (.01 to 100 md).
- The Vuko Mesa Field, core data was reviewed to determine a core-based net to gross ratio. Data was used to develop new transforms of wireline porosity and permeability processing using the GEOLOG program. Enhanced Vertical Resolution (EVR) processing of the raw wireline field tapes was also conducted in an attempt to obtain net to gross ratios consistent with core based estimates. These data have been integrated into a new three dimensional reservoir model to improve waterflooding management of Vuko field.

Offshore Cabinda, Angola, Block 0

Located in Lower Congo basin which lies in the West Coast of Africa between Republic of Congo and Central Angola.

Three main sequences mark the sequences of tectonic and depositional activity in Cabinda offshore (Lower Congo basin).

1. The Rift: Fault phase, characterized by rapid subsidence, followed by deposition of laccustrine and fluvial sediments (Neocomian and Mid-Aptian)
2. Evaporite deposition: The transition period from active rifting to thermal induced crustal subsidence (Aptian).
3. Subsidence stage: Occurred during regional marine deposition and active extension (Albian to Oligocene)

A series of transversal (elliptic) fractures from the mid-Atlantic rifts segmented the continental crust forming sub-basins. The Congo basin (a sub-basin) extending from Gabon basin to the north- east of Angola basin, is composed of lacustrine silt and shale of the Bucomazi Formation.

Calinda offshore has two main blocks (Zero and 14) and is operated by Chevron.

Cabinda Stratigraphic Column

- Cabinda stratigraphy is composed of Pre-Salt and Post-Salt depositional environments.
- The Pre-salt section, lying over the basement (Mayombe igneous and metamorphic complex), is non-marine deposits consisting of Lucula sands (fluvial channels) and Toca (carbonate reefs). Bufcomazi black shale (source rock of both pre- and post-salt) lies above Lucula and Toca.
- Presence of marine incursion in Aptian, was marked with deposition of evaporites of Loeme Formation, consisting of hafite and potash salts (camalsite, polyhafite and sythite).
- The Post-Salt tectonic movement was controlled by Loeme salt. The open marine transgression was characterized by the deposition of dolomite and dolomitic sandstones (Mavuma Formation), and later the open marine conditions produced sequences of continental shelf clastic and carbonates (Pinda Formation).
- Mesa reservoir of IABE Formation lies over Vermeila (sandstones) deposited in nearshore / shelfine. Mesa and Lago represent a period of gradual sea-level rising. The intervals contain sediments deposited in progradational units characterized by numerous and significant flooding events.
Challenges in Reservoir Characterization and Original Oil in Place Estimation in the Presence of Very Fine Bedding: An example of a mixed clastic-carbonate reservoir from Block 0, Offshore Angola

Author: Daniel M. Kiale, Co-authors: Steve Jenkins, Antonio Ingleis, Yahya Fitor and Julia Correia

Depositional Environment & Facies Interpretation

Three lithofacies have been interpreted from core:

1. **Facies I**: Argillaceous Siltstone, abundant detrital clay. Marginal reservoir quality rock (Patchy Light Staining).
2. **Facies II**: Silt Limestone (Packstone/Wackestone) with some detrital clay. Poor reservoir quality rock (Patchy Dark Staining).
3. **Facies III**: Very Fine Sandstone/Siltstone, Reservoir Quality rock (Ubiquitous Dark Staining).

- **Shales of the flooding marine units act as Vertical Seals over the tops of the reservoirs, reducing the vertical permeability.**
- **Depositional environments: distal shelf muds to proximal tidal environments**
- **Best production is in tidal channel deposits (With better lateral continuity and coarser grain size).**
- **Poorer production is found in shoreface deposits (Upward coarsening with variable p and k).**
- **Poorest production is found in flood tidal delta deposits (more fines, internal permeability barriers).**

Determine Cutoff from Core Study

- **Probabilistic Net Reservoir Cut off Analysis**
 - Net Reservoir cut off analysis suggests that a reservoir quality uncertainty zone exists between K cut offs of 1-10 mD.
 - Colors (dark brown and yellow) are dependent on the degree of oil staining and abundance of oil.

Vuko Mesa Log Resolution Challenges

- **How do we capture true vertical resolution when wireline logs do not resolve fine scale layering?**
- **Figure on the left shows the problem of resolving porosity and permeability in the Vuko Mesa.**
- **The presence of very fine bedding poses a serious challenge to formation evaluation, and to the estimation of oil volumes and oil recovery.**
- **Core plugs (red) have high frequency cycles that are not captured in this conventional log processing.**
- **Note that there are portions of the well that have low permeability and are not effective and are not identified by the log.**
- **The log-based estimates of Net/Gross can be overly optimistic.**

Reservoir Simulation Challenges

- **Uncertainties in the static reservoir properties (P, K) must be dealt with when predicting reservoir performance and planning future wells.**
- **Large adjustments to the static model were required to calibrate and history match previous models of the reservoir.**
- **Net to Gross was overestimated in conventional models, since effective and non-effective portions of the reservoir are "blended" together by the logs used to populate simulation cells and by large scale-up of the model.**
- **Total pore volume in the model needed to be reduced, since pore volume from non-effective rocks were merged with effective rocks and included previously.**
- **Water saturation needed to be reduced in previous models, since non-effective rocks were included in the simulation cells.**

Log Processing to Equalize Wells and improve Resolution

- **The objective was to obtain a good correlation for P, SW and K and tie to core data, improve vertical log resolution as much as physically possible.**
- **Multi-well core data from Vuko, Kungulo Takula and Numbi were input to permeability modeling.**
- **The Enhanced Vertical Resolution process uses data from multiple passes of the density log to equalize wells and improve resolution.**
- **The RHOB log was attempted using Halliburton’s EVR process.**
- **Recommended Prob. Cut offs: 1mD, 5mD and 10 mD have been employed to generate high, mid, and low EUR facies scenarios.**

Satellite Grid Log Reading

- **Net Reservoir cut off analysis suggests that a reservoir quality uncertainty zone exists between K cut offs of 1-10 mD.**
- **Thus K cut offs: >1mD, 5mD and 10 mD have been employed to generate high, mid, and low EUR facies scenarios.**

Oilsatulation in the SAA from reservoir simulation model. Green represents high oil saturation.

Recommended Prob. Cut offs: Good Reservoir, Non Reservoir.
Challenges in Reservoir Characterization and Original Oil in Place Estimation in the Presence of Very Fine Bedding:
An example of a mixed clastic-carbonate reservoir from Block 0, Offshore Angola

Author: Daniel M. Kiala, Co-authors: Steve Jenkins, Antonio Inglees, Yahya Fitor and Julia Correia

12 High Resolution Reservoir Characterization

Key Point:
Build model with log resolution!

1. Construct a fine resolution geologic Sgrid
2. Identify and develop uncertainty variable ranges
3. Probabilistic Reservoir Model Permutations

13 Variograms
14 RNR Facies Scenarios

15 Alternate Earth Models for Vuko Mesa

16 Oil Volumes for Alternate Models

17 Completed Work

- A family of reservoir models have been constructed for the Vuko Mesa field that are consistent with the available log, core, seismic and stratigraphic concepts. Resolution of the model is the same as that of wireline logs.
- Wireline logs for the field have been normalized, tied to wells, and the highest resolution logs possible have been used to build the current reservoir model. EWR processing was attempted, but was unsuccessful.
- Family of current models are “centered” around the current log data. However, we recognize that the current wireline logs are still limited by resolution, and additional work is required to investigate this effect on the dynamic (oil recovery) model.

18 Next Steps

- History-match of the current family of earth models is now underway. This will provide information about the range of parameters that provide a reasonable history match. It is anticipated that the low-side of models will provide the best match, given the over-estimation of NTG caused by the “averaging” of wireline logs.
- Net to gross corrections need to be applied to the current model, by comparing NTG in the cores and logs.
- A series of small models (or sectors) will be constructed at core resolution, and their recovery compared to the current family of models at log resolution, and the coarser resolution of the dynamic simulator.
- It is very important to maintain the proper dynamic behavior of this layered reservoir to obtain credible performance estimates for new injector and producer wells. This is a critical step in recovering the most reserves from Vuko Mesa.