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Abstract

The Trinidad Ultra-deepwater (UDW) area lies on today’s continental slope off the eastern coast of Trinidad; it overlies oceanic crust
and is part of the Barbados Fold Belt. Sedimentation has been rapid due to the constant feeding of clastic material from the Orinoco
River. Deepwater turbidite sands are interbedded with shales, possibly providing both reservoir and seals. Deepwater channels and
lobes have been identified and mapped in the existing 2D seismic. There are 13 wells that reached the lowest Pliocene, immediately to
the west of the UDW area, providing a direct tie to the seismic stratigraphy interpretation. Priority for reservoir was given to the late
middle Miocene to Pliocene, if only because deeper sections are increasingly overpressured and therefore difficult and risky to drill.
Clastic composition and texture are interpreted to be mature, with mainly quartzose sands of continental affinity, consisting of
amalgamated sand in the lobes and fine sand/silt interbedded with silty shales, in predominantly distal turbidites or overbank deposits.
Most of the structures identified were active during the Upper Miocene and Plio-Pleistocene, so no areas are expected to show sheet
like, unconfined basin floor fans. The ongoing development of the accretionary wedge will have focused sediments in a NNE
direction, in contrast to the SW-NE basinal axis trends which would dominate slightly older sediments. The growth of mud diapirs,
probably initiated in the Plio-Pleistocene as increased amount of sediments were deposited, further complicated the depositional
pattern. Turbidite deposition of upper and middle Miocene age is interpreted to be of distal fans facies, while in the Plio-Pleistocene,
they respond more to a minibasin setting and channel-levee facies.
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Deepwater sediments were deposited by flows
running parallel to structural axis

GOM minibasin facies understanding can be
applied to synclines in an active accretionary
wedge

Distribution of facies evolved with structural
growth




REPJOL

Regional location S

-62 -60 -58

Diachronous collision, Americas-Caribbean

12
“
@ Late Cretaceous @ Middle Eocene @ Middle Miocens @ RECENN Updused Lupo ssdMeazs, 1985
2) Middle Paleocene @} Middle Oligocene [ 6 | Early Pliovene
Cromriiew of the wubunface peucieum prology of noathens South America Pasd Mann and Alejasdro Ficalona
L 104 ki j

= Axial traces of anticlines Axial traces of synclines Shale diapirs

= Normal faults s Thrust 2\ Duatermnary volcanoes




Eastward accretionary wedge front propagation REPF '@:
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Orinoco drains into and in front of the REPrOL ,@:
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U. Pliocene - L. Pleistocene (3-1 Ma)
Pathways of the Sediments from Shelf to Basin
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ExxonMobil Heliconius-1
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UDW Blocks - Pleistocene Units RERFOL
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Haydn - 1, Pleistocene RECIOF
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Catfish - 1, Lower Pliocene REPSOL
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Active accretionary wedge RER/OL

trin—u; 1223 Lin=-
1306 23306 E

GIAGE 1

3096

[ 3.5040

[ 3.760

4000

50090

6250
| 6.5040

{ 5.760

‘| a.25a

| 4500
-1 a75a

EFalili]

“Lazs0

“
[ 9.5040

; At -,
W : T _— ey : a AR =
' (4 - RV i - o . A o, e
= » b e P ~ s e ALY 3 .
. o S ot v = - =5

[ 10.2540




West of the UDW area, deepwater turbidites and rersor @,
shale diapirs
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Turbidite System in Structurally Confined reRsOL
Basins Channel and Lobe Facies Distribution
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Incised Channel
Slope Complex

Channels evolve to lobes when the down-slope gradient and/or flow-confinement change. As
upslope ponds are filled, turbidite currents spill through channels producing down cutting.
The new lobes (sheet-like sandstone bodies) accumulate down-slope. Whereas thick sand
packages are deposited in the lows (reservoir), In the surrounding highs hemipelagic muds
accumulate (lateral/top seal).
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(Frather et al.,, 1998)

Truncation

Yellow indicates youngest deposits of each phase and not necessanly sandy facies

A. Early fluid gravity-flow events tend to ‘sheet-outward’ across the basin floor (sheet-like sandstones) and onlap the basin margin
if the flow sediment volume is large enough. As the mud-content increases the channel/levee and background mudstone aggrades
toward the equilibrium profile.

B. Once the slope basin is filled to the down-slope spill point the channel-levee system begins to erode and readjusts the slope
toward a new equilibrium profile and transports significant volumes of sediment to the next down-slope minibasin.

C. If the gravity-flow sediment supply is cut-off by avulsion of the supply system or relative rise of sea level, the entire area
becomes draped with hemipelagic mudstones. These hemipelagic mudstones provide topseal and often separate pressure
compartments.




Near Base Pleistocene isochron map REPIOL
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Upper Pliocene horizon (from Catfish) depicting minibasins, fault REPSOL I@:
propagated folds and shale-cored ridges
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Minibasins: Facies Seismic Signature MTC,
Sheet-like and Channelized Bodies
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Minibasin Fill in Trinidad UDW REPrOL
Sequences and Facies Architecture

YPF

Sheet-like facies

The lower interval of each sequence are prone to develop sheet-like sandstones, accumulated as lobes in a basin floor fan
setting. In the upper portion of each sequence channelized bodies, with or without attached lobes, are more common.

Younger units within the same minibasins are mainly made up of channelized bodies, accumulated within the distributary system
of the deep water environment, and lobe accumulation should have been developed basinward. The youngest units have
developed channel-levee complexes as observed in the area at the present day.

Sheet-like and channelized bodies are incased within mud-rich packages that clearly show features related to mass-transport
complexes (MTC).




Kingfish structure




Kingfish structure and RMS amplitude
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Kingfish Lower Pliocene facies
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Kingfish Lower Pliocene facies
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Trinidad UDW Blocks 5 and 6 Pliocene LST REPSOL I@:
Deepwater Channel and Lobe Facies Distribution YPF
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Kingfish structure, amplitude and facies
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Trinidad UDW Schematic Evolution of RERFOL .@:
Accretionary Wedge Minibasins .
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