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Abstract

We explore a new methodology to solve questions about the effects of different and varying allogenic controls on deposition patterns
and morphology of alluvial fans by performing a systematic series of numerical stratigraphic simulations of fan development using the
DIONISOS program (IFP, France). Model output is compared to field examples of recent and ancient alluvial-fan systems.

Model runs span different time scales, from 10 ky, for comparison with abundant studies of late Quaternary alluvial fans, to 500 ky,
for comparison with ancient successions of long-lived systems preserved in the geological record. Models comprise a full spectrum of
sensitivity tests. The effects of single factors; i.e., (variations in) tectonics, sediment supply, water discharge, and sediment
composition, as well as combinations of these, are tested under steady to unsteady forcing conditions, and with different time
resolutions.

We compare our model output with a case study of a unique Miocene alluvial fan system in the Teruel Basin (central Spain). This fan
system has aggraded in an astronomically forced, cyclically alternating paleoclimate with alternating relatively humid and arid
periods. Comparison of the architecture of the alluvial-fan succession with the model output corroborates the approach used in the
stratigraphic modeling.
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Scientific setting
Starting point and Question

Experimental modeling — Dynamics of erosion /
sedimentation and sediment supply (Rennes
University - France)
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=> Could these observations/concepts be transferred to the "real" world
(outcrop example) and quantified through numerical modeling?
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Methodology
Finding the best outcrop example to work on

D. Ventra (PhD — Utrecht University): Orbital = :
signatures in alluvial fan sequences /
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=> How iIs a cyclic climate due to astronomical parameters reco'rded
the stratigraphic architecture? Are there any differences with a i
tectonic forcing?
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1. Model calibration (sensitivity analysis) based on field data and bibliographic review
(Teruel Basin, Spain — D. Ventra's PhD)

2. Numerical modeling - Stratigraphic simulations (/FP, Dionisos)

3. Feed-back for improving the field study, and consequently increasing the robustness of the

modeling approach
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1. Model calibration: alluvial fan
— of the Teruel Basin (Spain)
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1. Model calibration
Initial setup: outcrop-based dataset
I

=  Endorheic basin 5x6 km (dx: 0.2 km)
m  Fan radius ~2 km, 70 m thick
= Slope (20° to 1°)

= Duration ~500 kyr (dt: 5 kyr, Upper
Miocene)

= Lithology

m 2% cobble (1-4%)
20% pebble (4-40%)
10% granule (4-20%)
8% sand (2-16%)
60% mud (20-90%)
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1. Model calibration
Dataset constraints
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1. Model calibration
Sensitivity analysis — Fan profile
540\ - e 540 ———
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2. Numerical modeling of cyclic
——changes
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2. Cyclic changes
3D modeling objectives

= To restore the overall architecture of the fan (slope
distribution, grain-size distribution, distance of progradation,
thickness);

= To restore the cyclicity in the distal part of the fan;

= To restore the onlap geometry of the fan onto the feeding
valley;

= To restore the overall backstepping of the fan.
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2. Cyclic changes
3D modeling - Reference model

Dionisos - 372

_ R E e

= 3D evolution of the
pebble distribution
through time
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2. Cyclic changes
3D exploration of the simulation

= Along-strike and dip-strike
o . . |
-g; analysis of the fan architecture
0.9
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2. Cyclic changes
Reference model — Longitudinal cross-section

hiN

To avoid additional difficulties related to a
transitional phase

m 1. To give the fan its equilibrium shape
m 2. Totest cyclic supply

Cyclic supply
/0m
f Equilibrium phase — “Steady state”
/ansitional phase
< >
6 km i



2. Cyclic changes
Reference model (AF25)- Parameters

Insolation Sediment supply Water discharge Cobble  Pebble  Granule Sand Mud

= Simple hypothesis: linear relationship between supply
(Qs, Qw, ratio) and insolation
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2. Cyclic changes

Reference model — Longitudinal cross-section
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Run AF25: 111450 — t10700 ky
Subsidence rate: 150m/Ma

= Consistent grain-size & slope distribution

= Interfingering of coarse-grained deposits with distal fine-
grained deposits

16 Geology — Geochemistry — Geophysics Division — 1ler novembre 2008

. © IFP




= [

VIO

alibration

| C
are out-of-phase (10 kyr)

hde
& Qw

,Ol\)

=> « In-phase » model (reference model AF25) is more consistent with
the architecture of the Teruel fan than the « out-of-phase » model

Overall coarsening
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2. Cyclic changes
Tectonic influences — No Subsidence

=> « No subsidence » model is more consistent with the overall
architecture of the Teruel fan than the reference model

vaiey

Similar overall stacking pattern

Landward shift

= ..
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2. Cyclic changes
Tectonic — Non-linear Subsidence

=> Major difficulty to distinguish the overprint of cyclic tectonics into
the stratigraphic record
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Conclusion
Feed-back to the "real" world

Insolation Reference model Out-of-phase supply No subsidence Cyclic subsidence

m  Several tectonic scenarios produce very similar stratigraphic architecture
- m Coarse-grained deposits during eccentricity minima
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Conclusion
Feed-back to the "real" world

Insolation Reference model Out-of-phase supply No subsidence Cyclic subsidence

m  Several tectonic scenarios produce very similar stratigraphic architecture
m Coarse-grained deposits during eccentricity minima . s, ==

nnnnnnnnnnnnnn

Geology — Geochemistry — Geophysics Division — 1er novembre 2008



22

[

Conclusion
What to keep a lookout?

= The vertical stacking and the overall architecture of the models
are consistent with the outcrop suggesting that the hypothesis of
a linear relationship between insolation and supply is reasonable;

m Several tectonic scenarios produce very similar stratigraphic
architecture for the Teruel study case. The only clue to identify
changes in tectonics is the overall stratigraphic architecture
(onlap in the feeding valley, overall migration of the depocenter);

= This modeling approach suggests that the maximum
progradation of the coarsest facies occurred during eccentricity
minima.
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Perspectives
What's next?

m To test several scenarios with varying amplitude and timing of

supply (Qs, Qw, lithologic ratio);

To validate the methods (final validation of the chronostratigraphic
scheme this summer) or to improve the code for catastrophic
events (critical water discharge Qw);

= To take into account the catchment dynamics (response time,

[

storage, weathering, sediment supply evolution).
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2. Cyclic changes
Wheeler diagram

Inenlatinn Qarimant ciinnly \ANatar Adierharna Dahhla \Ahaalar Nianram (AF2R)

= Distance of progradation, lithology distribution are consistent
*  with observation in the outcrop
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