Quantifying Climatic and Tectonic Forcing of Alluvial-Fan Stratigraphy by 3D Numerical Modeling and Comparison with Outcrop Examples*

Sebastien Rohais¹, Dario Ventra², and Poppe L. de Boer²

Search and Discovery Article #40363 (2008)
Posted November 11, 2008

*Adapted from oral presentation at AAPG Convention, San Antonio, TX, April 20-23, 2008

¹Stratigraphy-Sedimentology, IPF, Rueil-Malmaison, France (sebastien.rohais@ipf.fr)
²Earth Sciences, Utrecht University, Faculty of Geosciences, Utrecht, Netherlands

Abstract

We explore a new methodology to solve questions about the effects of different and varying allogenic controls on deposition patterns and morphology of alluvial fans by performing a systematic series of numerical stratigraphic simulations of fan development using the DIONISOS program (IFP, France). Model output is compared to field examples of recent and ancient alluvial-fan systems.

Model runs span different time scales, from 10 ky, for comparison with abundant studies of late Quaternary alluvial fans, to 500 ky, for comparison with ancient successions of long-lived systems preserved in the geological record. Models comprise a full spectrum of sensitivity tests. The effects of single factors; i.e., (variations in) tectonics, sediment supply, water discharge, and sediment composition, as well as combinations of these, are tested under steady to unsteady forcing conditions, and with different time resolutions.

We compare our model output with a case study of a unique Miocene alluvial fan system in the Teruel Basin (central Spain). This fan system has aggraded in an astronomically forced, cyclically alternating paleoclimate with alternating relatively humid and arid periods. Comparison of the architecture of the alluvial-fan succession with the model output corroborates the approach used in the stratigraphic modeling.
Quantifying climatic and tectonic forcing of alluvial-fan stratigraphy by 3D numerical modeling and comparison with outcrop examples

S. Rohais (IFP, France)
D. Ventra (Utrecht University, The Netherlands)
P.L. de Boer (Utrecht University, The Netherlands)
Scientific setting
Interest on alluvial fan

- First architectural element between the catchment and the sedimentary basin = key element for qualifying (nature) and quantifying the sediment supply dynamics (storage, by-pass…)

=> Direct impact on reservoir distribution (continental environments) and sequence stratigraphy concept
Scientific setting

Starting point and Question

- Experimental modeling – Dynamics of erosion / sedimentation and sediment supply (*Rennes University - France*)

=> Could these observations/concepts be transferred to the "real" world (outcrop example) and quantified through numerical modeling?
Methodology
Finding the best outcrop example to work on

D. Ventra (PhD – Utrecht University): Orbital signatures in alluvial fan sequences

=> How is a cyclic climate due to astronomical parameters recorded in the stratigraphic architecture? Are there any differences with a tectonic forcing?
1. Model calibration (sensitivity analysis) based on field data and bibliographic review
 (Teruel Basin, Spain - D. Ventra's PhD)
2. Numerical modeling - Stratigraphic simulations *(IFP, Dionisos)*
3. Feed-back for improving the field study, and consequently increasing the robustness of the modeling approach
1. Model calibration: alluvial fan of the Teruel Basin (Spain)
1. Model calibration

Initial setup: outcrop-based dataset

- Endorheic basin 5x6 km (dx: 0.2 km)
- Fan radius ~2 km, 70 m thick
- Slope (20° to 1°)
- Duration ~500 kyr (dt: 5 kyr, Upper Miocene)

Lithology:
- 2% cobble (1-4%)
- 20% pebble (4-40%)
- 10% granule (4-20%)
- 8% sand (2-16%)
- 60% mud (20-90%)
1. Model calibration

Dataset constraints

- Water discharge (Qw)
 - 0.03-2 m³/s, mean 0.3 m³/s

- Sediment supply (Qs)
 - 0.05-12 km³/Ma, mean 3 km³/Ma

- Subsidence rate
 - mean 150 m/Ma

- Diffusion coefficients are derived from all these parameters
 - $K_{water-driven}$: 35-0.8 km²/ky
 - $K_{gravity-driven}$: 0.15-0.004 km²/ky

Saito & Oguchi (2005)
1. Model calibration
Sensitivity analysis – Fan profile

Qs sensitivity
Pebble distribution (%) along the fan profile (constant Qw)

- Qs = 12 km³/Ma
- Qs = 6 km³/Ma
- Qs = 3 km³/Ma
- Qs = 0.3 km³/Ma

Qs&Qw sensitivity
Pebble distribution (%) along the fan profile

- Qs = 12 km³/Ma, Qw = 2 m³/s
- Qs = 6 km³/Ma, Qw = 0.5 m³/s
- Qs = 3 km³/Ma, Qw = 0.05 m³/s

Qw sensitivity
Pebble distribution (%) along the fan profile (constant Qs)

- Qw = 0.05 m³/s
- Qw = 0.5 m³/s
- Qw = 1 m³/s
- Qw = 2 m³/s

Lithologic ratio sensitivity
Pebble distribution (%) along the fan profile (constant Qs&Qw)

- 90% Mud
- 60% Mud
- 20% Mud
2. Numerical modeling of cyclic changes
2. **Cyclic changes**

3D modeling objectives

- To restore the overall architecture of the fan (slope distribution, grain-size distribution, distance of progradation, thickness);
- To restore the cyclicity in the distal part of the fan;
- To restore the onlap geometry of the fan onto the feeding valley;
- To restore the overall backstepping of the fan.
2. Cyclic changes
3D modeling - Reference model

- 3D evolution of the pebble distribution through time
2. Cyclic changes
3D exploration of the simulation

- Along-strike and dip-strike analysis of the fan architecture
2. Cyclic changes
Reference model – Longitudinal cross-section

- To avoid additional difficulties related to a transitional phase
 - 1. To give the fan its equilibrium shape
 - 2. To test cyclic supply

Cyclic supply

Equilibrium phase – “Steady state”

Transitional phase

70 m

6 km
2. Cyclic changes
Reference model (AF25)- Parameters

<table>
<thead>
<tr>
<th>Insolation (Laskar, 1999)</th>
<th>Sediment supply (km³/Ma)</th>
<th>Water discharge (m³/s)</th>
<th>Cobble ratio (%)</th>
<th>Pebble ratio (%)</th>
<th>Granule ratio (%)</th>
<th>Sand ratio (%)</th>
<th>Mud ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Simple hypothesis: linear relationship between supply (Qs, Qw, ratio) and insolation
2. Cyclic changes
Reference model – Longitudinal cross-section

- Consistent grain-size & slope distribution
- Interfingering of coarse-grained deposits with distal fine-grained deposits
2. Model calibration
Qs & Qw are out-of-phase (10 kyr)

=> « In-phase » model (reference model AF25) is more consistent with the architecture of the Teruel fan than the « out-of-phase » model
2. Cyclic changes

Tectonic influences – No Subsidence

=> « No subsidence » model is more consistent with the overall architecture of the Teruel fan than the reference model

Similar overall stacking pattern

Landward shift
2. Cyclic changes
Tectonic – Non-linear Subsidence

Run AF25: Pebble Distribution (11450 to 10700 ky)
Constant subsidence (150m/Ma)

=> Major difficulty to distinguish the overprint of cyclic tectonics into the stratigraphic record

Cyclic tectonic quiescence (100ky)
Conclusion
Feed-back to the "real" world

- Several tectonic scenarios produce very similar stratigraphic architecture
- Coarse-grained deposits during eccentricity minima
Conclusion
Feed-back to the "real" world

- Several tectonic scenarios produce very similar stratigraphic structure.
- Coarse-grained deposits during eccentricity minima.
Conclusion
What to keep a lookout?

- The vertical stacking and the overall architecture of the models are consistent with the outcrop suggesting that the hypothesis of a linear relationship between insolation and supply is reasonable;

- Several tectonic scenarios produce very similar stratigraphic architecture for the Teruel study case. The only clue to identify changes in tectonics is the overall stratigraphic architecture (onlap in the feeding valley, overall migration of the depocenter);

- This modeling approach suggests that the maximum progradation of the coarsest facies occurred during eccentricity minima.
Perspectives
What's next?

- To test several scenarios with varying amplitude and timing of supply (Qs, Qw, lithologic ratio);

- To validate the methods (final validation of the chronostratigraphic scheme this summer) or to improve the code for catastrophic events (critical water discharge Qw);

- To take into account the catchment dynamics (response time, storage, weathering, sediment supply evolution).
Quantifying climatic and tectonic forcing of alluvial-fan stratigraphy by 3D numerical modeling and comparison with outcrop examples

S. Rohais (IFP, France)
D. Ventra (Utrecht University, The Netherlands)
P.L. de Boer (Utrecht University, The Netherlands)
2. Cyclic changes
Wheeler diagram

- Distance of progradation, lithology distribution are consistent with observation in the outcrop
References

Saito, K., and T. Oguchi, 2005, Slope of alluvial fans in humid regions of Japan, Taiwan and the Philippines: Geomorphology, v. 70/1-2, p. 147-162.