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Abstract

Fault facies modeling is the process of generating 3D geological objects in the fault envelope in reservoir grid. The modeling is performed
to capture reservoir heterogeneity caused by faulting. The conditioning factors for fault facies modeling are a fault product distribution
factor (FPDF, a parameter describing the distribution of lithologies in the fault envelope) and a shear strain parameter.

FPDF is generated based on the following variables:

1. Pre-faulting sedimentary facies configuration in the fault envelope.

2. Fault displacement model, which is constrained based on the following input variables:
- Fault core thickness as a function of fault throw.

- Footwall and hanging wall damage zone widths as functions of fault throw.

- The displacement percentage accommodated by fault core and damage zones.

- The type of displacement function.

The strain parameter is generated based on the fault displacement model. The strain parameter, together with the FPDF, is used for creating
the probability distribution that serves as an input in stochastic modeling of the fault facies. The fault facies volumetric proportion and
spatial distribution in the resulting models can be partly controlled by applying simple manipulations to the fault facies probability
distribution.

The modeling technigque allowed many synthetic fault envelope models to be built easily by varying the modeling input variables
constrained by field data. The resulting models were systematized in matrix form, capturing the variation of both sedimentary and fault
system configurations. Currently 64 models have been implemented, each executed in 10 stochastic realizations. Quantitative analysis of the
implemented models shows that the application of the modeling technique is able to reproduce natural fault envelope configurations formed
under various sedimentary and structural configurations.
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Fault Facies Project (Tveranger et al., 2005)

o Structural heterogeneities implementation in
reservoir models

 Fault impact on fluid flow in petroleum reservoirs

« Development within the framework of existing
iIndustrial modeling tools
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Workflow: - Syversveen et al. (2006)
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rkflow: geo-cellular modeling

Facies

Sandstone : Sandstone

AR
IR
Ly “‘.““‘.\1

Sandstone Eim ; Sandstone

0623 Normalized shear stra

Sandstone




Workflow: FZ gridding (in Havana)
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Workflow: SF resampling
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Workflow: SF restoring
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Workflow: create lithologic distribution
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Workflow: create shear strain

Facies

Sandstone Sandstone

Sandstone S ; / Sandstone

Normalized shear stra

Sandstone




Workflow: FF probability distribution
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Workflow: FF pixel-based modeling
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Workflow: grid merging (in Havana)
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Displacement model (FPDF)
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Displacement model — variables
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Displacement model — field data
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Dlsplacement model — subsurface data
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Displacement model — variable modification
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Displacement model — variable modification
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Shear strain
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Fault facies probability distribution
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Fault facies probability distribution
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Fault facies — fault core
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Fault facies — damage zones
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Fault facies probability distribution
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Matrix of geo-models
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Geo-model characteristics

Modifying fault system
configuration
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Geo-model characteristics

Modifying sedimentary
facies configuration
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Geo-model characteristics

Modifying DZ width and
FC thickness
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Geo-model characteristics

Modifying FC throw
percentage
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' Geo-model characteristics

Modifying the type of
displacement function
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Conclusions

e Improvements
— Displacement models

 Reproducing meso-scale observations
— Sequential indicator simulation

 Modeling input vs. resulting geo-model
configurations

— Fluid flow
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