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Abstract

Non-actualistic (e.g., deviating from depositional models developed for recent deposystems) carbonate platforms are not the exception
in the geologic record because of the wide range of biological and environmental factors controlling facies character and architecture.

A fundamental concept is the exponential decrease of carbonate production with increasing water depth from a maximum at shallow
depths to the base of the photic zone. However, when the dominant factory is microbially induced, high rates of carbonate production
extend on the slope down to dys-/aphotic depths and new production-water depth profiles must be developed.

Studies of Carboniferous (Asturias, Pricaspian Basin) and Permian (Capitan Reef) high-relief carbonate platforms have shown that the
microbial-boundstone production extends to 300m water depth: 1) the detrital lower slope consists mostly of matrix-free cemented
rudstone sourced by the slope boundstone with subordinated platform-top-derived material; 2) carbonate production on the slope is
controlled by environmental parameters (temperature, nutrients, oxygenation) that are water-depth dependent, but the microbial
boundstone response to relative sea-level changes differs from modern reefs; 3) carbonate growth is not seriously reduced during sea-
level falls because it can continue downslope, 4) progradation can take place at high rates despite the lack of platform-top shedding
(slope vs. highstand shedding); 5) concepts of leeward progradational vs. windward aggradational margins have to be revised.
Paleozoic high-relief platforms with microbial boundstone-dominated margins seem to have developed in mesotrophic, starved
restricted basins with oxygen-depleted bottom waters that would not be suitable settings for the recent coral-reef rimmed platforms.
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At the search for patterns

Conceptual models are necessary for interpretation and prediction

Model simplicity vs. stratigraphic complexity (space, time, incomplete record,
diagenesis)

Models need eventually to be revised

The carbonate factory represents the space where carbonate sediment is produced but
also the processes that led to carbonate production
(from Schlager, 2003 after many sources)

Models developed for the Recent cannot always answer the complexity of the
geologic record

Little is known about many processes not in fashion in modern settings

Several carbonate factories and lack of pure end-members (a continuum, spatially
and temporally dynamic? cf. Wright and Burgess, 2005)

Different production rates, depth windows and DIFFERENT RESPONSES to changes
in accommodation space and environmental conditions




Non-actualistic carbonate platforms: the paradigm shift

Recent o [n i Highstand PLATFORM shedding
coral reef-rimmed platforms of maximum Highstand (leeward) progradation
0 50 100

0L ' ' Lowstand platform shut down

Zone of light saturatiohr?

50 —

ase of euphotic zone
approx. 300m

Late Palaeozoic ‘ Any SL stand SLOPE shedding
microbial boundstone Progradation at any SL stand
flat-topped platforms Lowstand downslope growth

Redrafted from Della Porta (2003), Kenter et al. (2005)

An exception? Carboniferous - Asturias, N Spain; Tengiz, Pricaspian Basin and Permian Capitan
Reef, USA




(Coral reef) Carbonate Production vs. Depth
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Modes of carbonate precipitation and carbonate factories
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Organo-sedimentary deposits by benthic microbial communities
trapping and binding detrital sediment
forming the locus of mineral precipitation (Burne and Moore, 1987)

Processes Products:
Biomineralization : Microscale
Photosynthesis by cyanobacteria Aphanitic micrite
Heterotrophic bacteria (decay of organic (automicrite)
matter via ammonification, nitrate and oidal
sulphate reduction). peloida
laminae
Organo-mineralization: Non-living
reactive organic substrates Macroscale
(bacteria, EPS, sponges) Mounds
Margin-slope

Sources: Reitner et al. (1995), Trichet and Defarge (1996), Neuweiler et al. (1999); Riding, (2000), Arp et al. (2003), Gautret et al. (2007)



Modelling platform geometry

A REEF-RIMMED PLATFORM (Miocene, Mallorca)
After Bosence, Pomar and Waltham (1994)
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Production-depth profiles and
depositional geometry
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Types of carbonate platforms: a genetic approach
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Non-actualistic platform production and geometry
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Schlager (2003) from Schlager (2005)



Non-actualistic platform production and geometry
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Pennsylvanian high-relief platform (Asturias, N Spain)
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Self-nourished Slope

Upper slope: Cement-rich microbial boundstone from 10-20m to 300-400 m depth (30-40% slope)
Lower slope: Detrital matrix-free cemented boundstone breccias (50% slope)
Minimum platform-top contribution (10-15% slope)
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Della Porta et al. (2003, Facies); Kenter, Harris and Della Porta (2005, Sed. Geol.)




Progradational vs. aggradational slope built by
light-independent microbialites: two factories?
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Tengiz (Carboniferous, Pricaspian Basin)
upper slope cement-rich microbial boundstone (>400m depth)

Russia L
= Moso
o ) (%, Moscow cis
F -| Ligazak_ .
o
mal

{ K‘hgna g8 n:E\ /-H—\_v_\}

1 Norih

N s S0 Kazakhstan
{ T Basin

- nm_u;-'\:
e Tengiz ; ,j\'m
II’"'/ s

) m"fb,n‘_\
s :-)I\J J,/J\\_Uzbekls::\\L .’

[ Turk menistan )

“Tournaisian

Famennian

F— Supersequence Boundary
e Nlaximum Flooding Surface
m——— | Indefined biostratigraphic or depositional Surface

VE = 10x D Platform (shallow & deeper) D Lower slope gﬂ Allochtonous debris
‘ |/7\ Upper slope and deeper platform |:' Toe-of-slope and basin :\ \olcanoclastics

From Kenter, Harris and Della Porta (2005) (Modified after Weber et al., 2003)

5000 m




Capitan shelf margin (Permian, TX-NM)
upper slope cemented microbial boundstone (30-150m depth)
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Depositional model

late Palaeozoic steep high-relief microbial boundstone slopes
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Slope shedding model

Late Palaeozoic microbial boundstone
margins and slopes

Modern coral boundstone margins

Not to scale Not to scale

Slope Shedding Model Versus Highstand Shedding Model
Insensitive to light (0-300 m wd) Sensitive to light (<30 m wd)
Large production area in upper slope Small production area in upper slope
Sea level “insensitive”; environmental sensitivity Sea level sensitive
Shedding to slope by boundstone production,; Shedding to slope by platform top

minor platform top derived sand bypasses upper slope skeletal/non-skeletal sand to mud
Steep and planar upper slopes Low angle and exponential slopes
High accretion rates Low accretion rates

Kenter, Harris and Della Porta 2005

Slope is “self-nourishing”, little contribution from platform top
High rates of steep slope progradation at any sea-level stand

Progradation function of boundstone growth vs. off platform (Highstand) shedding



Model for microbial boundstone high-relief slope

Environmental controls on microbial boundstone growth rate and depth window?
Tropical settings
Highly supersaturated waters: high T, low PCO,, high alkalinity, high pH
Degradation reactive organic matter (bacteria, EPS, sponges), oxygen depletion.
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What localizes microbial high-relief margins?
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high relief on antecedent topography

Confined/restricted basins
Oxygen-depleted sea floors (sulphate reduction, high alkalinity and increase saturation)

Mesotrophic ... but phosphates inhibit aragonite and cyanobacteria-related precipitation
Upwelling? Local overturning, no open ocean (deep cold waters reduce saturation)




Steep slopes vs. ramps: how many “microbial” factories?

late Palaeozoic: many ramps with deep water mud-mounds, rare high-relief
microbial boundstone slopes

Why many ramps with deep-water mud mounds did not evolve into high-relief?
lower production rate confined in deeper water

did not form in the ideal setting to promote high rates of growth

Did microbial high-relief platforms developed only after major extinction events
and in specific oceanographic/environmental settings?
How many microbial/ biologically induced carbonate factories?

Calci-microbial vs. Heterotrophic bacteria vs. Organo-mineralization

Or same “passive” precipitation processes have different rates according to
physico-chemical conditions and organic substrates available?

1)Calci- Microbial Boundstone 2) Bryozoan-crinoid Transgressive

High-to Iowsia.nd.——mmmmw———,_) o Aaze S % i B . biocementstone and

packstone




Where/What is the carbonate factory sourcing the progradational slope?
Middle Triassic atolls (Dolomites)

Foreslope Platform virtual lack of a
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Lower Jurassic (High Atlas, Morocco) upper slope:
sponge-microbial boundstones downslope of coral reefs
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Depositional models based on the Recent need to be revised for margins with
microbial cement boundstone or coral-microbial associations
High production, extended depth window
Carbonate growth not seriously reduced during sea-level falls

Progradation of steep slope clinoforms independent from platform top shedding (slope vs.
highstand shedding)

Revision of leeward progradational vs. windward aggradational margins. Oceanographic control on
margin growth?

The “model” provided for progradational, high relief microbial platform margins
might be considered for other areas and times.

...... But many aspects of the microbial boundstone precipitation, cementation,
and slope processes remain poorly understood.

For interpretation, modelling and prediction we need a better understanding of
types, rates and the environmental controls of the “microbial” factories.
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