Click to view article in PDF format.
Stratigraphic Framework and Reservoir Quality Distribution, Tengiz Field, Western Kazakhstan*
By
L.J. (Jim) Weber1 and Paul M. (Mitch) Harris2
Search and Discovery Article #20058 (2008)
Posted June 25, 2008
*Adapted from extended abstract for presentation at AAPG Hedberg Conference, “
Carbonate
Reservoir Characterization and Simulation: From Facies to Flow Units,” El Paso, Texas, March 14-18, 2004.
1 ExxonMobil Exploration Company, Houston, TX ([email protected])
2 ChevronTexaco Energy Technology Company, San Ramon, California, U.S.A. ([email protected])
Introduction
The supergiant Tengiz field of western Kazakhstan produces oil from an isolated
carbonate
platform (areal extent of 160 km2) of Devonian and Carboniferous age. Seismic and well data clearly show two principal regions within the buildup, platform and slope that directly relate to reservoir quality and production characteristics.
|
|
Figures
Stratigraphic Framework, Reservoir Characterization, and Field Development
The supersequence-scale stratigraphic framework was developed through an integrated interpretation of seismic, core, log, and biostratigraphic data. An initial broad Late Devonian platform was followed by punctuated backsteps during the Early Carboniferous (Tournaisian and Viséan). The uppermost Early Carboniferous (Serpukhovian) is characterized by several kilometers of platform progradation seaward of the Upper Viséan platform break. The basal Upper Carboniferous (Bashkirian) platform succession was aggradational. Drowning in the Early Bashkirian halted
On the platform, hydrocarbons are produced from Upper Viséan through Bashkirian reservoirs in grainstone and mud-lean packstones. Multiple
The coarse stratigraphic architecture was used to further subdivide the platform portion of the reservoir for better reservoir characterization and for reservoir modeling. The temporal and spatial variability in reservoir quality of the platform, as shown by cross sections and maps, is directly related to stratigraphy. Time-slice mapping of synchronous depositional facies provides the basis for Expansion of plant facilities and well drilling costs at Tengiz will require considerable outlay of capital spending in the near future. Investigation of stratigraphy at Tengiz intends to better constrain geologic risk associated with volume assessments and prediction of reservoir quality. This will be especially critical not only for expansion scenarios that rely on primary depletion, but also in reservoir continuity issues critical to success of gas displacement projects under consideration. |
