Click to
view article in PDF format.
GCRock Physics and the Case for Multicomponent Seismic Data*
By
Bob Hardage1, Diana Sava1, Randy Remington1, and Michael DeAngelo1
Search and Discovery Article #40273 (2008)
Posted February 7, 2008
*Adapted from the Geophysical Corner column, prepared by the authors, in AAPG Explorer, January, 2008, and entitled “Rock-Physics Theory a Help.” Editor of Geophysical Corner is Bob A. Hardage. Managing Editor of AAPG Explorer is Vern Stefanic; Larry Nation is Communications Director.
1Bureau of Economic Geology, The University of Texas at Austin ( [email protected] )
General Statement
Examples of P-P and P-SV seismic images of deep geologic targets across the northern shelf of the Gulf of Mexico (GOM) are illustrated in Figure 1, with the P-SV data warped to P-P image-time coordinates. This time warping is a first-order depth registration of P-P and P-SV images, implemented by using an averaged VP/VS velocity ratio function for the area to adjust P-SV image time to P-P image time.
This first-order adjustment of P-SV image time to P-P image time is sufficiently accurate to allow equivalent geology to be identified in side-by-side comparisons of P-P and P-SV data. Comparing the seismic responses at the primed and unprimed number locations in each image space shows that each elastic wave mode provides different – but equally valid – sequence and facies information about subsurface geology, which is a fundamental principle of elastic wavefield stratigraphy.
|
uFigure CaptionsuP-P vs. P-SV imagesuApplicationuAcknowledgment
uFigure CaptionsuP-P vs. P-SV imagesuApplicationuAcknowledgment
uFigure CaptionsuP-P vs. P-SV imagesuApplicationuAcknowledgment
uFigure CaptionsuP-P vs. P-SV imagesuApplicationuAcknowledgment
|
P-P Images vs. P-SV ImagesStructural features A and B (Figure 1) are interpreted to be depth equivalent. The time-warping process positions A and B in time-warped P-SV space to within 100 ms of their positions in P-P image space. A salt structure blanks out both P-P and P-SV images approximately midway between CDP coordinates 19,600 and 21,000. Features 1 through 4 on the P-SV image indicate a cyclic depositional process that is not obvious in the P-P image (1’ through 4’). Feature 5 is an example of P-SV data showing strata that are not present in the P-P data (position 5’). Feature 6 is an example of the P-P mode providing a better image of high-dip strata than does the P-SV mode (event 6’) along this particular profile. On other profiles in the area, the P-SV mode often images high-dip strata better than does the P-P mode. Application of Rock-Physics TheoryRock-physics theory helps us understand why these P-P and P-SV reflection images are both correct depictions of deep geology, and yet they still have the spectacular differences illustrated by features 1 through 5. A key concept to realize is that the GOM rocks imaged in Figure 1 have a significant amount of clay.Laboratory analysis of GOM core samples by Han et al. (1986) has led to the relationships between P-wave velocity (VP), S-wave velocity (VS), porosity, and clay content that are noted for layer 2 of the stratigraphic model in Figure 2. These rock-physics equations are important because:
1) They are based on laboratory measurements made on real rocks.2) The rock samples come from geology imaged by the seismic data in Figure 1. 3) The rocks that were analyzed in the laboratory had a wide range of clay content.
To illustrate the value of this rock-physics theory we used the simple, two-layer Earth model in Figure 2 to represent a typical reservoir target beneath the northern shelf of the GOM. The upper layer of this model was kept constant, with its petrophysical values defined by the equations in the figure, whereas clay content and pore fluid were varied in the lower layer.
Resulting
P-P and P-SV reflectivities from the two-layer interface, assuming a
porosity of 20 percent for the sandstone reservoir, are displayed in
Figure 3.
These
1) For
certain clay-content concentrations (c), the target layer is
practically invisible to the P-P seismic mode, but generates a
strong P-SV reflection. For example, when c = 20 percent, P-P
2) At other
clay-content concentrations, the target layer is a poor P-SV
reflector but a robust P-P reflector. For example, when c=40
percent, P-P
Conclusion
Variations of clay content in GOM sandstones can thus cause certain
intervals of depth-registered P-P and P-SV data to have P-SV seismic
sequences and facies that differ from P-P seismic sequences and
facies – and yet both the P-P image and the P-SV image are correct
images of the geology. Features 1 through 5 on the data displayed in
Figure 1 are examples of such
These differing P-P and P-SV sequences and facies provide a deeper and richer insight into rock physics and geology than do seismic sequences and facies produced by single component seismic data. Explorationists working in areas having clay-dominated siliciclastic rock units should consider utilizing multicomponent seismic data to evaluate prospects rather than relying on P-wave data alone.
Castagna, J.P., M.L.
Batzle, and T.K. Kan, 1993, Rock-physics – the link between the rock
properties and AVO response, in Castagna, J.P., and Backus,
M.M., eds., Offset-dependent Han, De-hua, A. Nur, and Dale Morgan, 1986, Effects of porosity and clay content on wave velocities in sandstones: Geophysics, v. 51, p. 2093-2107.
Seismic data were provided by WesternGeco. Research funding was provided by DOE contract DE-FC26-04NT42239.
|


