Click to view article in PDF format (~1.3 mb).
Petroleum Systems of the Mumbai Offshore Basin, India*
By
Basant Giri Goswami1, Harvir Singh1, Ashok Kumar Bhatnagar1, Adarsh Kumar Sinha1, And Ram Raj Singh1
Search and Discovery Article #10134 (2007)
Posted September 27, 2007
*Adapted from extended abstract prepared for AAPG Annual Convention, Long Beach California, April 1-4, 2007
1Geochemistry Labs, Keshava Deva Malaviya Institute of Petroleum Exploration (KDMIPE), Oil & Natural Gas Corporation Ltd., 9, Kaulagarh Road, Dehradun, India-248 195
Abstract
Mumbai Offshore Basin, a pericratonic rift basin in the western continental
shelf of India, covers about 148,000 km2 from coast to 200 m isobath.
The basin is divided into six
tectonic
blocks (Tapti-Daman, Diu,
Heera-Panna-Bassein, Mumbai high-Deep Continental Shelf [DCS], Ratnagiri, and
Shelf Margin), and the sedimentary fill ranges from 1100-5000 m. Several large
oil and gas fields have been discovered in this basin, and the presence of
hydrocarbons has been established in the multiple pay zones belonging to L-III
limestone reservoir of Miocene age (only in Mumbai high), Mukta (early
Oligocene), Bassein (middle Eocene), Panna (Paleocene to early Eocene)
reservoirs, and Daman (early Miocene-late Oligocene) and Mahuva (early
Oligocene) formations in Tapti Daman block. This work presents the detailed
geochemical evaluation on more than 200 rock extracts and 250 oil samples and
maturity
modeling
in key generative depressions of all the
tectonic
blocks of
the basin.
Studies indicate that Paleocene to early Eocene Panna Formation has good to excellent source-rock characteristics in the basinal part of every block in the entire basin. The middle of Panna Formation attained the maturity of 0.6% VRo equivalent at about 12-20 Ma. The Panna source rocks have predominantly Type III kerogen in lower layers and Type II and III mixed kerogen in upper layers. However, few source-rock layers in Mahim graben and Deep Continental Shelf (DCS) area contain Type I kerogen. Based on the variations in organofacies, the oils have been placed into two groups. The first group oils, having only terrestrial source input, correlate with the source-rock extracts of lower layers, whereas the second group oils, with terrestrial and marine mixed input, correlate with the source-rock extracts of upper layers of the Panna Formation. Based on the reservoir and source combinations, major petroleum systems in the basin are: Panna-L-III, Panna-Mukta, Panna-Bassein, and Panna-Panna.
|
|
IntroductionMumbai offshore basin accounts for nearly two-thirds of the annual petroleum production of India. The mature source rocks are present in the lower Eocene-Paleocene Panna Formation. Further, marginally mature potential source rocks within Oligocene in Tapti-Daman area and within Neogene in DCS and deeper part of the basin also exist. Hydrocarbons have been discovered in multiple reservoirs in this basin, ranging from fractured basement to middle Miocene. The Mumbai offshore basin has three major depressions: Surat and its southward extension to Ratnagiri in the east, Saurashtra low in the northwest, and Murud and Rajpur lows in the southwest. Due to multiplicity of depressions, source rocks, and reservoirs, oil-source genetic relationship is a challenge. The understanding of genetic correlation amongst oils and source rocks is a prerequisite to model hydrocarbon generation, expulsion, and entrapment. The prime objectives of this study are: · To geochemically characterize the source rocks and oils through conventional biomarkers, non-biomarkers, and stable carbon isotopic composition.
·
To carry-out 1D-thermal maturity
·
To provide geochemical inputs for petroleum system
Geological Setting and StratigraphyMumbai offshore basin, a divergent passive continental margin basin, is located on the continental shelf off the west coast of India. The basin is bounded by the western coastline of India in the east, Saurashtra arch in the north, Vengurla arch in the south, and west margin basement arch in the west (Figures 1 and 2). The basin was formed due to extensional tectonics at the time of rifting of the Indian plate from Madagascar during Late Jurassic-Early Cretaceous period. Large-scale volcanic eruptions, which covered most of the basin, followed this episode. As the rifting continued, the immature sediments deposited at the toe of faults as alluvial fans, filled the initial morphotectonic depressions during Paleocene. This was followed by the first marine incursion towards the close of Paleocene and beginning of early Eocene. Thus, early Eocene marks a widespread transgression. Sediments were deposited in deltaic to restricted marine to shallow marine environments. Sedimentation during this period caused some adjustments in the basin. The early Oligocene transgression covered most parts of the basinal area and inundated parts of Mumbai high. A major unconformity is noted at the top of lower Oligocene. Sea level rise during early Miocene submerged large areas of the basin and terminated the . Oligocene delta progradation. The middle Miocene transgression marks the last phase of the widespread carbonate sedimentation in the Mumbai high–DCS area (Basu et al., 1982; Zutshi et al., 1993). The
basin has a NW-SE-trending horst-graben geometry. The grabens are
bounded by normal faults, and the horsts/ridges are dissected by
NE-SW-trending cross faults. On the basis of its structural
configuration and its nature, as well as the type of sediment fill,
the basin is divided into six
The main Mumbai high block is surrounded by three depressions:
The Shelf Margin block bounded on its west by Kori-Comorin ridge and east by Paleogene hinge and its northern part includes Saurashtra offshore (Figures 1 and 2). Surat depression and its southward extension through Mahim depression to Vijaydurg depression in Ratnagiri block are the prime depocenter of the clastic sediments of early Eocene to Paleocene age. Murud depression and Saurashtra low had relatively more open marine environment due to minor shielding provided by the west basement arch compared to Surat-Mahim depression. The main reservoir rocks in the basin are the limestones ranging in age from Eocene to middle Miocene. Clastic sequence of Paleogene also hosts the hydrocarbons. The extensive post-Miocene shale acts as a regional cap rock in the basin. The local shale interbeds within limestones act as a local cap rocks for different pay zones. However, in Ratnagiri block, compact and tight limestones may also act as cap rocks for hydrocarbon accumulations in fractured limestone reservoirs.
Hydrocarbon OccurrencesOils mainly occur in the limestone horizons of lower Miocene age (L-III) in major hydrocarbon fields; viz., Mumbai high, Panna, S. Bassein, Heera and Ratna, Mahuva and Daman pay (Oligocene) in Tapti area, Bassein pay (middle Eocene to upper Eocene) in Panna-Bassein-Heera and Ratna areas and Ratna pay (mid Eocene to lower Eocene) in Ratnagiri area. With the recent oil occurrences in the sands of Panna Formation in Vasai East, the Panna pay is emerging as a commercial pay zone. Few oils also occur in clastic / fractured basement reservoirs and middle Miocene L-II and S1 pays. The majority of these oils show moderate API gravity (25-40°), high pour point (27-33°C), significant wax (7-20%), and low sulphur (0.1-0.3%) contents. These oils are predominantly aliphatic, having high saturate/aromatic ratio (>1.5) and saturate content (>40%). Only a few oils and mostly condensates were found in the Tapti Daman block.
Source RocksThe clastic sediments in the lower Eocene to Paleocene sedimentary sequences (Panna Formation) are the principal source rocks across the basin. Thickness of the source rock varies from 30 m to 1000 m depending on location. The excellent source rocks of restricted marine to lagoonal deposits within the Panna Formation in the Central graben and adjoining area are the principal source of hydrocarbon accumulation in the basin. In the Mahim graben, a 400-m-thick sequence in the Panna Formation contains very good/excellent oil-prone effective source-rock facies, which account for the commercial petroleum reservoirs within Bassein, Mukta and Heera formations in the east of Panna and Bassein fields (average TOC=2.3- 15.4%; average S2=3.5-50.1 mg HC/g rock; average HI=112-277 mg HC/g TOC). Organic-rich mature source-rock sequences in the Panna Formation occur in depressions across the DCS area and west-southwest of Mumbai high (average TOC=1.5-5.6%; average S2=2.6-11.6 mg HC/g rock; average HI=94-270 mg HC/g TOC). Source-rock data from the deepest exploratory well in the Vijaydurg graben of Ratna depression show good, mature source-rock section in the lowermost unit of the Panna Formation and thin coal and coaly shale layers with very good source-rock quality at the top of Panna Formation. In the Tapti-Daman area, two exploratory wells, located in the eastern flank of Navsari low, contain about 70-m-thick oil and gas prone source-rock layers (average TOC=2.3-5.4%; average S2=2.5-8.3 mg HC/g rock; average HI=91-154 mg HC/g TOC), and better source rocks are more likely to occur in distal environments in the Purna graben and west Daman low corresponding to these layers. The sedimentary column in Shelf Margin areas is dominated by clastics, except in middle Eocene, which has carbonates. Source-rock potential of the Paleogene sediments is moderate, but some good organic carbon-rich source-rock layers are present in Neogene sediments.
Maturity
|
