Click to view article in PDF format.
GCP-P and P-SV Seismic Wave Modes at Salt Boundaries*
By
Bob Hardage1, Diana Sava1, Michael DeAngelo1, and Randy Remington1
Search and Discovery Article # 40237 (2007)
Posted May 8, 2007
*Adapted from the Geophysical Corner column, prepared by the authors, in AAPG Explorer, April, 2007, and entitled “Which Seismic Wave Mode is Best?”. Seismic examples were provided by WesternGeco. Editor of Geophysical Corner is Bob A. Hardage. Managing Editor of AAPG Explorer is Vern Stefanic; Larry Nation is Communications Director.
1Bureau of Economic Geology, The University of Texas at Austin ([email protected] )
General Statement
Salt-sediment
boundaries are common seismic imaging targets that exist at many depths across
several basins. Some of these boundaries are salt-sand interfaces; others are
salt-shale interfaces. In this article we consider the
reflectivity
behavior of
P-P and P-SV wavefields at salt-sediment interfaces in marine environments, to
determine if one seismic wave mode (P-P or P-SV) has an imaging advantage over
the other for studying deep salt-related traps.
uGeneral statementuFigure captionsuTwo ModelsuExamplesuConclusion
uGeneral statementuFigure captionsuTwo ModelsuExamplesuConclusion
uGeneral statementuFigure captionsuTwo ModelsuExamplesuConclusion
|
Two ModelsThis analysis was done using a simple two-layer Earth model: 1) In the first model, the bottom layer was salt (with properties VP = 4550 m/s, VS= 2630 m/s, and r = 2.16 gm/cm3), and the top layer was sandstone (with properties f = 10 percent, VP = 4679 m/s, VS = 2840 m/s, and r = 2.476 gm/cm3). 2) In the second model, the lower layer was this same salt, but the upper layer was first defined to be a “soft” shale (with properties f = 20 percent, VP = 3400 m/s, VS = 1754 m/s, and r = 2.316 gm/cm3) and then was changed to a “hard” shale (with properties f =5 percent, VP = 4700 m/s, VS= 2775 m/s, and r = 2.536 gm/cm3).
In our terminology, a “hard” shale has velocities greater than salt, whereas a “soft” shale has velocities less than salt.
Our modeled
1)
P-P
2)
The opposite is
true for large angles of incidence where P-SV
For many
source-receiver offsets, this
Examples
Examples of these
|
