Click to view page images in pdf format.
7th Middle East Geosciences Conference and Exhibition
Manama, Bahrain
March 27-29, 2006
Saudi Aramco
In areas prevalent with sand dunes, conventional assumptions for datum static correction
computation can become invalid. The Rub Al-Khali region is well known for sand dunes and
sabkha (salt mudflats). Variations in elevation and travel time from dune base to crest are too
much for routine static correction methods. This case history shows a successful strategy of
solving particular components of the static corrections independently before combining them.
The components include: the sand dune correction, the base of sand to datum correction, the
refraction and reflection residual
static correction.
A regionally defined time/depth curve describing dune compaction in this area yields sand dune
travel times. Final datum statics
are calculated by adding this time to the time from base of sand
to final datum, using a velocity model derived from upholes.
High and low frequency components within the composite datum statics
corrections are
separated. A fter applying only the high frequency
statics
, the seismic data is corrected to a
smooth floating datum. To prevent stacking velocity distortions datum
statics
are applied from
base of sand to final datum with the sand time applied residually.
U nc orrec ted time shifts remain in this initial model, due to differential slip and dip face
compaction, and other anomalous surface consistent effects. Surface consistent refraction
residual
statics
are computed and applied on linear moveout corrected data. The static corrections
are completed with surface consistent reflection
residual
statics
.
This method led to a focused time section.