--> Take Your Pick: Skeptic or Proponent, by Bob A. Hardage, Khaled Fouad, and Glenn Winters #40228 (2006).
[First Hit]

Datapages, Inc.Print this page

  Click to view article in PDF format.

 

GCTake Your Pick: Skeptic or Proponent*

By
Bob A. Hardage1, Khaled Fouad1, and Glenn Winters2
 
Search and Discovery Article #40228 (2006)
Posted December 22, 2006
 
*Adapted from the Geophysical Corner column, prepared by the authors, in AAPG Explorer, December, 2006. Editor of Geophysical Corner is Bob A. Hardage. Managing Editor of AAPG Explorer is Vern Stefanic; Larry Nation is Communications Director.
 
1Bureau of Economic Geology, Austin, Texas ([email protected] )
2Fasken Oil and Ranch, Midland, Texas
 

General Comment 

Intriguing seismic examples are being developed in multi-component seismic research at the Bureau of Economic Geology, specifically examples documenting which one of the S-wave seismic modes images a key geologic feature better than does the P-wave mode -- the only seismic mode many explorationists have ever used. One of those examples is illustrated here.

 

uGeneral comment

uFigure captions

uExample

  uPrevious HitPPNext Hit and PS modes

  uAmplitude attribute

  uResults

uAcknowledgment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uGeneral comment

uFigure captions

uExample

  uPrevious HitPPNext Hit and PS modes

  uAmplitude attribute

  uResults

uAcknowledgment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uGeneral comment

uFigure captions

uExample

  uPrevious HitPPNext Hit and PS modes

  uAmplitude attribute

  uResults

uAcknowledgment

 

 

 

 

 

 

 

Figure Captions

Figure 1. Previous HitPPNext Hit time-structure map (left) and PS time-structure map (right) showing producing (solid circle) and non-producing (open circle) wells occurring randomly relative to structure. The position and general appearance of the northeast-plunging structural nose are reasonably equivalent in each image space (P-P and P-SV).

Figure 2. Previous HitPPNext Hit amplitude attribute (a) and the depth-equivalent PS amplitude attribute (b) across the reservoir interval. Previous HitPPNext Hit amplitude facies cannot be related to productive and nonproductive reservoir facies. In contrast, PS amplitude facies tend to segregate productive facies (high amplitudes; yellow/red colors) from non-productive facies (low amplitudes; green/blue colors).Well AL-1 was drilled to test this PS amplitude-facies map.

Click to view in sequence time-structure and amplitude-attribute maps.

Return to top.

 

Example 

The prospect is a carbonate Strawn play in West Texas. Traditional P-wave seismic Previous HitdataNext Hit in the area are good quality, produce accurate structure maps and sometimes, but not consistently, provide reservoir-sensitive attributes across Strawn targets. 

At this particular prospect, the Strawn play is stratigraphic, not structural, and traditional P-wave Previous HitdataNext Hit were having limited success in predicting optimal drill sites. A modest-size 3C3D seismic survey was acquired to determine the value of multi-component seismic Previous HitdataNext Hit for prospect evaluation.

 

Compressional Mode vs. Converted Shear Mode 

Figure 1 shows time-structure maps at the reservoir level created from the Previous HitPPNext Hit (compressional) and PS (converted shear) modes provided by the 3C3D Previous HitdataNext Hit. In making these maps, we depth registered the PS Previous HitdataNext Hit to the Previous HitPPNext Hit Previous HitdataNext Hit before interpreting the PS Previous HitdataNext Hit volume. 

The equivalence of the structural geometry shown by these two maps suggests that the PS Previous HitdataNext Hit Previous HitprocessingNext Hit has been done well and that the Previous HitPPNext Hit-to-PS depth registration is reasonably accurate across the reservoir interval. Superimposed on the maps are existing wells, both producers and non-producers, showing that there is no obvious relationship between structure and producing facies. Some producers are lower on the structure than are non-producers. Drilling targets are thus controlled by stratigraphic conditions, not by structure.

 

RMS amplitude  

Figure 2 shows one amplitude attribute (rms amplitude) extracted from narrow windows spanning the reservoir interval across the Previous HitPPNext Hit and PS Previous HitdataNext Hit volumes. In other areas, Previous HitPPNext Hit amplitude attributes have successfully delineated productive carbonate reservoirs in the Strawn; here, Previous HitPPNext Hit reflectivity is not definitive, as an inspection of Figure 2a shows. Previous HitPPNext Hit reflection amplitudes are random in nature, and amplitudes at non-producer wells look like Previous HitPPNext Hit amplitudes at producing wells.  

In contrast, PS reflection amplitude appears to react to productive and non-productive reservoir conditions (Figure 2b). The PS Previous HitdataNext Hit show a sinuous, high-amplitude anomaly (yellow/red) that reasonably segregates producing wells from non-producers. This reservoir facies is a low-porosity carbonate unit; porosity ranges from 1 to 7 percent across the prospect, and minimum productive porosity is 4 percent. Detecting the narrow porosity range between non-productive facies (1 to 3 percent) and productive facies (4 to 7 percent) is beyond seismic sensitivity for both the Previous HitPPNext Hit mode and the PS mode. 

Rather than using seismic Previous HitdataNext Hit to segregate areas of productive porosity from areas of nonproductive porosity, interpreters try instead to use seismic attributes to find maximum reservoir thickness. They then cross their fingers and hope that zones of favorable porosity will be found across intervals where there is maximum unit thickness.

 

Results of Test Well 

In this instance, the predictive value of PS reflection amplitude was tested by drilling well AL-1, labeled on the PS map (Figure 2b). This well found the thickest reservoir facies (122 feet) of all the wells shown on the maps. In other wells, the reservoir interval ranged from 80 to 111 feet. 

From the standpoint of reservoir thickness, this project supports the use of multi-component seismic technology for carbonate stratigraphic-trap exploration because the PS Previous HitdataNext Hit defined a maximum-thickness reservoir interval when conventional Previous HitPPNext Hit seismic Previous HitdataNext Hit could not. However, even though well AL-1 penetrated a maximum-thickness reservoir unit, insufficient productive porosity occurred across the interval to make the well commercial. This AL-1 well falls into that famous category many call “technical success but economic failure.” 

Skeptics can say that multi-component seismic Previous HitdataNext Hit did not yield a productive well. Proponents can say that the PS mode delivered exactly what was needed -- a definition of the maximum thickness of the reservoir. Take your pick: skeptic or proponent. 

The real message is that at this prospect, the PS mode provided vital reservoir information that the Previous HitPPTop mode could not.

 

Acknowledgment 

This research was funded by DOE/NETL.

Return to top.