
1) Can deformed Cutoff units in the southern Guadalupe and northern Delaware Mountains be correlated with the three formal
members and five informal correlation units of Harris (1982b; 1987; 1988a; 1988b; 2000)?

2) Can a sequence stratigraphic framework be established for the Cutoff that correlates to work by Fitchen (1993; 1997), Kerans
and others (1992; 1993), Kerans and Fitchen (1995), Sarg (1986; 1989), Rossen and others (1988), Sarg and Lehmann
(1986a; 1986b), Sonnenfeld (1993) and Sonnenfeld and Cross (1993) on equivalent shelfal units?

3) How many mass transport events (MTEs) are represented in the Cutoff?

4) What were the MTE transport vectors?

5) How far did the MTE bodies (bodies of sediment transported to their present locations, each in a single MTE) travel?

6) Does the nature of the MTEs evolve over time?

7) Do contractional and/or extensional domains exist, and where are they located?

8) How do microscale (mms-cms) features relate to mesoscale (ms) and macroscale (100s mskms) features?

9) How does the thickness of the mass transport complex (MTC) vary within the basin?

10) How did the Cutoff Formation influence development of paleo-bathymetry below the Brushy Canyon Formation?

11) How can internal Cutoff Formation structure be used to predict paleo-bathymetry below the Brushy Canyon Formation?

Research Questions̀

The Williams Ranch Member of the Cutoff Formation
consists of six offlapping, basinward-stepping
lithologic units of highstand carbonate turbidites
deposited across a drowned Early Permian carbonate
platform, then partially redistributed in slumps on the
slope and basin floor. Slumps are intercalated with
undeformed carbonate turbidites; the ratio of slumps
to undeformed sediment increases basinward.
Upslope evacuation scars correlate to downslope
slump bodies. Gravity flow deposition and subsequent
mass movement caused basinward thickening of the
Williams Ranch Member and caused the toe of slope
to shift basinward relative to the underlying Bone
Spring Limestone. This shift controlled landward
pinchouts of the overlying Permian Brushy Canyon
Formation channel and sheet sandstone bodies.

Williams Ranch Member deposition both responded to
and modified inherited bathymetric relief. Williams
Ranch isopach thicks correspond to larger underlying
lows and smaller overlying highs and exhibit a higher
ratio of undeformed to slumped sediment and a higher
percentage of soft-sediment folds relative to soft-
sediment truncation surfaces. These slump “pile-ups”
appear to be concentrated in inherited lows. Slump
bodies show a general southward transport vector,
with significant local variation possibly reflecting
underlying bathymetric influence. With repeated slump
events, “pile-up” zones resulted in local positive
bathymetry. Brushy Canyon sand fairways and
ponded sheets are focused in bathymetric lows, and
sands are sidelapped against highs atop the Williams
Ranch Member. Increased understanding of mass
transport complex evolution may lead to better
prediction of overlying reservoir geometry, both within
the Brushy Canyon Formation and in analogous
reservoirs in other deepwater settings.
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