Click to view article in PDF format.
Uncertainty, Risk and Decision Management on the Ormen Lange Gas Field Offshore Norway*
By
Eirik A. Berg1, Per A. Kjarnes1
Search and Discovery Article #40112 (2004)
*Adapted from “extended abstract” for presentation at the AAPG International Conference, Barcelona, Spain, September 21-24, 2003.
1Norsk Hydro ASA, Oslo, Norway
Abstract
The Ormen Lange gas discovery contains approximately 500 GSm3 gas initial in place. The gas is dry (GCR of approximately 11,000 Sm3/Sm3). The field is planned for governmental sanctioning by 1st quarter, 2004. Production start-up date planned is October, 2007. This paper reviews, historically, the partnerships effort in risk and decision management and actions taken in reducing the subsurface uncertainties. Furthermore, risk assessment and mitigating processes are discussed. The methodology used in evaluating the uncertainties and risks are presented, emphasizing the rapid modeling update approach used to ensure a sufficiently detailed and technically sensible approach within the limited time frame between the final parameter updates and project decisions.
|
|
IntroductionThe Ormen Lange gas field is operated by Norsk Hydro (development) and Shell (production). The Ormen Lange Field is situated 100 km off the west coast of Norway (Figure 1) and has an areal extent of 350 km2. Four gas wells and one dry well have been drilled to appraise the gas discovery. The reservoir (Figure 2) is severely faulted by polygonal faults. The reservoir is at 2913 m at the deepest in south and approximately 2650 m at the shallowest to the north. Field
development (Figure 2) involves 24 subsea
production wells, two 8-slot templates from production start-up, and 2
more templates, if
Uncertainties / Risks, Decision/Management Process, and History LessonsThe main subsurface uncertainties and risks anticipated since the discovery (1997) have been: 1. GIIP uncertainty (lack of well control) 2. Reservoir quality: Related to the thinning and possibly increased shale content in the turbiditic sandstones in flank, saddle, and distal areas. 3. Fault properties: Approximately 700 polygonal-type faults have been interpreted within, or close to, the reservoir-containing section. Stepping of GWC is observed. The fault-sealing properties (modeling) are important for estimation of reserves and field development considerations.
4. Rough seabed and varying water depths lead to challenging depth
conversion, and great efforts are 5. High water production from formation or surrounding aquifer may lead to hydrate problems.
Decision and Management Process A decision and management process was agreed to by the joint partnership (1999): 1. A governance process divides the project into stages, milestones, and decision gates with agreed-upon support documentation. 2. A risk assessment process supports the governance process. Risks and opportunities are ranked in accordance with probability and consequence. The highest ranked risks have high-occurrence probability or large consequence. These are treated as management level issues. Lower ranked risks are then technical or watch-list-level issues. Risks throughout the governance process either will be resolved, through work, or mitigated through the field development strategy. 3. A risk-based internal and external verification process is carried out. 4. Technical and economical evaluations and approvals at each decision gate, involving base, low and high cases and scenarios and uncertainty evaluation at discipline and total project level. 5. Use of decision trees and value of information exercise to decide on further investments.
History: Objectives and lessons learned: The
flatspot was interpreted as a GWC on a single seismic line in late
1980's. 2D data (1992) supported initial observations, and in 1996 3D
seismic data were acquired and processed on board (Norsk Hydro). The
seismic interpretation (Figure 3) confirmed
early work. Mapping of interpreted flatspot and AVO (amplitude versus
offset), DHI (direct The geological model was a turbidite sourced from the southeast with potentially deteriorating reservoir quality north of the mapped DHI.
Exploratory PhasePL209 (Norsk Hydro operated) and PL208 (BP operated) were awarded in early 1996. 6305/5-1
(NH 1997) was drilled high on the structure proving gas down to 2763
mMSL. The reservoir model (Figure 4) was
confirmed as an Upper Cretaceous and Lower Tertiary sand-rich,
high-density turbidite. The reservoir may be split into sand-rich
channel and channelized lobe facies and frontal splay and a distal
mudstone facies with thin interbedded sandstones. The main reservoir,
Egga RU, contains sand with a thickness of approximately 50 m, a net to
gross ratio of 90% and permeability approaching 500 md in average. The
water 6305/7-1 (BP 1998) to the south proved a GWC at 2913 mMSL. The well successfully tested and confirmed the good reservoir characteristics anticipated. No faults were observed. Similar gas pressure was found as in 5-1. A 14-m zone of residual gas was encountered below the FWL. 6305/1-1 (NH 1998) was drilled to the north of the mapped DHI gas effect. The well had only gas shows in a silty and shaly sequence (less than 1 m of sand). Reservoir pressure was 80 bar overpressured as opposed to the normally pressure gas-filled Ormen Lange.
PL250 (Shell operated) was awarded late in 1999. The Ormen Lange unit was established with Norsk Hydro as operator for the development and Shell for operation. It was decided to enter the concept selection phase. An appraisal strategy was agreed to, with one firm and one optional well. 6305/8-1 (NH 2000) was drilled in the saddle area (Figure 4), considered to have uncertainties in reservoir quality. The well proved good reservoir quality. A specially designed MDT water sample proved fresh formation water, confirming previous high Swi calculations. The high Swi was shown to be a function of pore throat size (sorting) and clay content and type (coating or particles and smectite content). The well proved a shallower contact (FWL of 2898 mMSL) than 7-1 and penetrated a 2-m thick oil column and 7 m of residual oil at the base. Seismic modeling work was performed in 2000 to evaluate the influence of residual gas on the interpreted flat spot. It was concluded that this zone may influence the well tie. In 2001, after a period of testing and evaluation, the partnership approved reprocessing of the seismic data focused on removal of seabed-generated multiple energy, in combination with improved seismic imaging by pre-stack depth migration (PSDM). It was
decided to drill, and test, 6305/4-1 (NH 2002) prior to deciding on
concept (DG3). The well was designed to penetrate the reservoir north
of, and deeper than, the 5-1 well to disapprove a possible dynamic
aquifer fed from the north. The main objective was, however, to perform
a fault seal / depletion test in a closed and fault-bounded segment with
good reservoir quality. It was desired to drill the well in an area with
high seismic quality inside a clearly defined flatspot. Special efforts
were placed on planning the test design. A numerical simulation model
was The PSDM-reprocessed seismic data successfully improved the data quality in large areas, increasing the confidence considerably of the seismic interpretation, including fault definitions and well ties.
The uncertainty evaluation has been built on a principle of system development: 1. Get the owners and users involved. 2. Use a problem-solving approach. 3. Establish phases and activities. 4. Establish standards for consistent development and documentation. 5. Justify system as capital investment. 6. Don't be afraid to cancel. 7. Divide and conquer. 8. Design system for growth and change.
Uncertainty Work
|


