Click to view article in PDF format.
Tasour Field, Republic of Yemen Block 32: Case History of a Decade of Learning*
By
James Bambrick1, Ross Clarkson1, Halvor Jahre2, Sven Erik Lie2
Search and Discovery Article @20020 (2004)
*Adapted from “extended abstract” for presentation at the AAPG International Conference, Barcelona, Spain, September 21-24, 2003.
1TransGlobe Energy Corporation, Calgary, AB ([email protected])
2DNO-ASA, Oslo, Norway
Introduction
The Block 32
development area is located in the Hadramaut region, south-central Yemen,
adjacent to the prolific Nexen/Occidental Masila fields which contain total
reserves of more than one billion barrels (Figure 1).
Block 32 was awarded to Clyde Petroleum in 1992 and had a succession of partners
over the next 10 years. The Tasour-1 discovery was made in late 1997, following
over 1500 km of 2D seismic and 5 dry holes. The area is characterized by a
highly dissected dendritic drainage pattern of jebels (plateaus) and intervening
wadis (valleys) superimposed upon gently dipping block-faulted
Jurassic/Cretaceous/Tertiary sediments of the Say'un-Masila basin. The area
presents unique operational challenges typified by 300-m vertical limestone
cliffs and temperatures of up to 60oC. Lower Cretaceous Qishn
sandstones form the principal reservoir with porosities up to 23 % and
permeabilities up to 2-3 darcies. The oil (29o API) is sourced
principally from the underlying Jurassic Madbi shales and collected in a simple
faulted
trap
, characterized by isopach/isochron thinning which is indicative of
early structuring. Sealing thickness of approx. 135 m requires a bounding fault
displacement of less than 60 msec. to avoid breaching the
trap
. This paper
illustrates the unique problems encountered in understanding the Tasour field
(primarily structural) and the solutions achieved after a decade of
trial-and-error learning.
|
|
Regional Setting and GeologyThere are three major NW-SE trending sedimentary basins in central Yemen, two of which are very prolific petroleum provinces (Figure 1). The westernmost Marib/Shabwa basin, principally filled by pre/syn/post-rift Jurassic - Lower Cretaceous carbonates, clastics, and evaporitic sequences, is characterized by complex salt tectonics and listric faulting. The central Say'un-Masila basin, principally filled by Middle-Upper Cretaceous open-marine carbonate/clastic sequences, is characterized by flat-lying (post-rift thermal sag) strata and simple extensional block faulting. The younger Jeza basin is dominated by Upper Cretaceous-Tertiary sediments with no commercial hydrocarbons discovered yet. These basins are separated by the Mukulla and Fartaq highs, respectively, and are bounded to the north by the Hadramaut arch.
Block 32 sits on the northern edge of the Say'un-Masila basin to the
south of the Hadramaut arch. Upper Jurassic/Lower Cretaceous pre- and
syn-rift sequences include basal Kohlan clastics, shed from surrounding
crystalline basement highlands, followed by massive
carbonate/shale/carbonate (Shuqra/Madbi/Naifa/Saar) sequences acting as
both source and reservoirs. Lower Cretaceous fluvial/estuarine deposits
of the Qishn
Although the Qishn
It was also found in the early 1990's that surface UER
Seismic Acquisition/Processing Problems and Solutions The rugged topography presents an extreme challenge to seismic acquisition and processing. Otherwise, seismic interpretation is quite straightforward with only five reflectors of significance corresponding to Fartaq carbonate, Qishn carbonate, Qishn Red Shale, near S1 sand and Saar carbonate. Heli-portable dynamite crews are utilized in seismic acquisition in the majority of the area. Data quality is severely compromised by the topography and typically 100 fold is required to surpass noise. The exception is in the wadis where excellent data quality is the norm. Seismic acquisition methodology has evolved in a circular manner. The late 1980's to early 1990's saw straight lines, regardless of surface difficulties. These were typically poor quality and noisy due to low fold at wadi-jebel crossings and limitations of the elevation static models (refraction statics do not work). Acquisition in the mid-late 1990's attempted to stay either on top of the jebels or down in the wadis, or minimized the crossings by circuitously following the topography. This was intended to minimize the elevation/static corrections but often resulted in highly crooked lines. Crooked line bin-scatter resulted in arbitrary line positioning which made fault location inaccurate and generated misties at depth. Differently binned versions of the same seismic line could be up to 500 m apart. It was also found (Mills, 1992) that geophone placement on certain formations, notably the upper Jeza and UER limestones, produced very noisy records due to geophone coupling and/or absorption problems, whereas the Jeza shales produce better records. The Jeza, however, is often represented by steeper slopes, which hamper the layout of complex receiver patterns. Early acquisition parameters were also quite simple, relying on short shot-and-receiver group intervals to build fold. Some areas defied acquisition of good data even with few jebel-wadi crossings. The nature of this acquisition noise was eventually identified and successfully addressed. Complex shot-receiver patterns were developed specifically to attenuate high-amplitude reverberation from the vertical jebel walls (Nickoloff and Manatt, 1997). These patterns, although challenging to administer in the field, are reliable and still provide the best data quality attainable.
Early on, it was found that refraction static corrections could not be
made because only lines in the wadis had any identifiable first Initial mapping of the Tasour field indicated a fault-bounded anticlinal structure. It was not until the crooked line binning issues were re-examined that the concept of fault-shadow effects were considered. Fault shadows are typically manifested as anomalous time pull-down of seismic events below the fault plane. This effect can be removed to a large degree by prestack depth migration. Figure 2 illustrates a typical seismic dip line before and after prestack depth migration. The removal of the anomalous time pull-down effect has had a dramatic effect on the structural interpretation of the Tasour field and has thereby removed the greatest uncertainty in estimating ultimate recoverable reserves.
Reservoir/Production Issues
The Qishn reservoirs throughout the area usually out-produce initial
reserve estimates. Primary recoveries can exceed 50% due to exceptional
reservoir properties and an active water drive. Porosity typically
averages 22% and permeabilities range from 2-3 darcies, eliminating much
of the risk usually associated with reservoirs. The very strong water
drive (up to 1300 psi) provides a natural water flood resulting in the
exceptional primary recovery factors. Produced water is re-injected into
the Qishn
SummaryThe Tasour area presents unique exploration/development challenges that have been met over the past 10 years by successful trial and error. Seismic acquisition has now reached the point where very good quality 2D data can be expected with careful field procedures. The Tasour field continues to grow in size with each additional well and is now approximated at 21 MMBO recoverable (38 MMBO in place). Several new prospects have been delineated with the current evolved methodology. Resolution of the fault shadow issue has significantly enhanced the pool size. Earlier interpretation as a faulted anticlinal structure has been replaced with a more typical rotated fault-block interpretation without significant rollover into the fault, as shown in Figure 3.
ReferencesCsato, I., et.al., 2001, New views of the subsurface play concepts of oil exploration in Yemen: Oil & Gas Journal, v.99, no. 23, p.36-47. Fagin, Stuart, 1996, The fault shadow problem: Its nature and elimination: The Leading Edge, p.1005-1014. Glazebrook, Kate, 2003, Personal communication on the Nexen development of the satellite based UER structure mapping/deep correlation method. Harris, Richard, Cooper, Mark, and Shook, Ian, 2003, Focusing oil and gas exploration in Eastern Yemen by using satellite images and elevation data alongside conventional 2D seismic: Recorder (CSEG), v. 28, no. 2, p.30-34. Mills, S.J., 1992, Oil discoveries in the Hadramaut: How CanadianOxy scored in Yemen: Oil & Gas Journal, v.90, n.10. Nickoloff, Tom, and Manatt, Jim, 1997, Small advances yield big improvements in seismic images from difficult areas: Oil & Gas Journal, Nov. 3 issue.
Putnam, Peter E., Kendall, George, and Winter, David A.,
1997, Estuarine deposits of the Upper Qishn
Oil & Gas Journal, 2001, Yemen's oil production climbing,
potential great (in: Middle Thomson, Ian, 2002, Prospects from space: How to produce structural geology maps and prospect leads in the highly dissected faulted rock desert areas of the Republic of Yemen, in Abstracts of the 2nd International Yemen Oil & Gas Conference, Sana'a, Republic of Yemen. |
