A Kinetic Modeling Approach to H2S Risk Assessment in the Pre-Salt Reservoirs in the Santos Basin

Igor Souza¹, Geoffrey Ellis², Luiz Felipe Coutinho¹, Alexandre Ferreira¹, Rut Diaz³, Ana Luiza Albuquerque³

¹Petrobras; ²U S Geological Survey; ³Fluminense Federal University (UFF)

9.29.2020 - 10.1.2020 - AAPG Annual Convention and Exhibition 2020, Online/Virtual

Abstract

The pre-salt play in the Santos Basin contains giant oil and gas accumulations and is considered the largest petroleum discovery in the last decade. However, the fields contain non-hydrocarbon gases (e.g., CO2 and H₂S) that bring technical challenges for exploration and production. Although H₂S concentrations are quite low (15 to 180 ppmv), corrosion and environmental issues can arise, with higher costs required to mitigate these problems. Consequently, it is important to identify the generation processes of these gases to improve estimates of the required investments during the initial phases of the projects. Santos Neto et al. (2013) suggested that the main H₂S generation process in the pre-salt reservoirs in the Santos Basin is thermochemical sulfate reduction (TSR), mainly based on the sulfur isotopic composition of H₂S, oils, and anhydrites. Additional TSR proxy analyses were conducted (compound-specific sulfur isotope analyses - CSSIA and thiadiamondoid quantification) and these subsequent results suggested that TSR may not be involved. To constrain the possible origins of H₂S, we have modelled in situ TSR in low temperature carbonate reservoirs (~100°C) using published kinetic parameters. TSR is a complex process that depends on many factors (e.g., time, temperature, water chemistry, reservoir mineralogy, and oil composition). We used the initial parameters provided by Zhang et al. (2012) to generate TSR models that we classify as catalytic and non-catalytic, following the proposed two-stage reaction scheme. In general, the catalytic models, which consider the presence of catalysts such as high H₂S partial pressure, elemental sulfur, or acidic conditions, predict reaction rates that are too fast for the Santos Basin with unrealistically high H₂S concentrations.

The non-catalyzed models predict sulfate reduction amounts varying from 0.003% up to 42%, which corresponds to H₂S concentrations ranging from approximately 3 ppmv to 3.5%. These results highlight the sensitivity of H₂S risk models to variations in TSR reaction kinetics. The modeling results show that it is possible to reach the same H₂S content present in some oil fields in the Santos Basin with non-catalyzed TSR kinetics proposed by Ma et al. (2008). If the source of H₂S in the basin is from TSR, it is possible that thiadiamondoids and CSSIA are not capable of recording small quantities of TSR when the reactants (oil and sulfate) have similar sulfur isotopic compositions. It is important to note that the current models assume that the TSR reaction only occurs within 10 m of the water/oil contact. The models could be improved by considering fluid mixing and diffusion beyond this reactive zone. Other possible H₂S generation mechanisms should also be tested (e.g. oil or kerogen cracking). The source of H₂S in the pre-salt reservoirs in Santos Basin is still unknown, and more studies are needed to address this question.

AAPG Datapages/Search and Discovery Article # 91200 © 2020 AAPG Annual Convention & Exhibition Online, Sept. 29- Oct. 1.