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Summary

We use Stolt migration/de-migration operator to remove blended sources interference in common receiver
gathers. Stolt operator is used as a computationally efficient alternative to the apex shifted hyperbolic Radon
operator. The problem of estimating the interference free data using Stolt operator is posed as an inversion
problem. This inversion utilizes an `1 misfit function that is not susceptible to erratic noise in the data such as
blending interferences.

Introduction

Blended sources acquisition offers many advantages over conventional acquisition such as reducing acqui-
sition time and increasing illumination (Garotta, 1983; Beasley et al., 1998; Berkhout, 2008; Ikelle, 2010).
Blended sources data is equivalent to time shifting individual sources data and summing them according to
the sources firing times. Therefore, the blended sources data can be represented as a function of the single
sources data by the following equation

b = ΓD (1)

where b is the blended data, D represent the original data cube that would be recorded without source over-
lapping and Γ is the blending operator (Berkhout, 2008). Blended data can be separated by the adjoint of the
blending operator (known as psuedodeblending operator)

D̃ = Γ
Hb, (2)

where D̃ represents the Pseudodeblended data cube. Pseudodeblending removes sources time delays and
divide the long blended data onto its equivalent non-overlapping sources data cube (Figure 1). However, pseu-
dodeblending does not remove interferences resulting from overlapping sources. Therefore, pseudodeblended
data cube contains considerable amount of interferences that need to be removed using denoising techniques
(Berkhout, 2008; Kim et al., 2009; Huo et al., 2012; Ibrahim and Sacchi, 2013, 2014). Figure 2 shows that the
blended sources interferences have different structures in different gathers. While interferences have coherent
structure in common shot gather, its structure in common receiver gathers is incoherent. The reason for this
incoherency in common receiver gathers is the random delays in sources firing times. Therefore, interferences
can be removed by denoising the data in common receiver gather (Berkhout, 2008).

Stolt operator

Recently, Ibrahim and Sacchi (2013, 2014) proposed using robust inversion of apex shifted hyperbolic Radon
(ASHRT) transform to separate blended sources data by removing interferences in common receiver gathers.
One major disadvantage of Radon transforms is their high computational cost when preformed in time domain.
However, Radon transform computational speed can be increased when it is computed in the frequency do-
main. Unfortunately, the best Radon basis that fit the data use hyperbolic or apex shifted hyperbolic travel
times which are time variant and so can not be computed in frequency domain. To address this limitation, Trad
(2003) proposed using Stolt mapping operator to compute the ASHRT model. Stolt operator (Stolt, 1978) map
the frequency ω to wavenumber kz in Fourier domain for constant velocity. The adjoint Stolt operator can be
written in operator format as a concatenation of three operators as

LT = FFT−1
kz,kx

MT
ω,kx

FFTt,x, (3)

and the forward operator as
L = FFT−1

ω,kx
Mkz,kx FFTz,x, (4)
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Figure 1 Schematic for the pseudodeblending operator.
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Figure 2 Pseudodeblended data cube and the different seismic gathers that can be used for denois-
ing (show in in green arrow).
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iterations is less than a defined tolerance value (tolerance = 0.01) or when it reach a maximum

number of iterations.

Finally, we also clarify that the forward Stolt operator is also convolved with a wavelet. This permits

representing a constant amplitude hyperbola via a single coefficient in Radon space. Consequently,

the adjoint operator is crosscorrelated with the wavelet. In other words, in our algorithm we

have replaced the operator L by CL and LT by LTCT . The operators C and CT correspond to

convolution and crosscorrelation with a known wavelet, respectively (Claerbout, 1992). We have

selected a zero phase wavelet with an amplitude spectrum similar to the amplitude spectrum of the

wavelet in the data.

1.4 Synthetic Data Example

τ

1.5 Real Data Example
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Figure 3 Stolt operator acting as an alternative to apex shifted hyperbolic Radon operator.

Stolt operator estimates a cross-section in the ASHRT model cube. The ASHRT operator has a computational
cost of O(na×nτ×nv×nx), where na,nτ ,nv and nx are the numbers of apex locations, apex times, velocities and
offsets, respectively. Assuming that we scan for all possible apex locations and times, then we can assume
that na = nx and nτ = nt . Therefore the classical ASHRT cost is O(n2

x × nt × nv). On the other hand, Stolt
operator has a cost (with no zero padding) that is of the 2D FFT of the data with size nt ×nx followed by f − k
mapping and inverse 2D FFT of the model with size nt × nv× nx. Therefore, the total computational cost of
an ASHRT implemented via Stlot migration/de-migration is O([nt log2(nt)+ nx log2(nx)][nv + 1] + nv× nkx× nω),
where nkx and nω are number of horizontal wavenumbers and temporal frequencies, respectively. The cost
of the f − k mapping is proportional to nv× nkx× nω and we stress that the latter is an upper limit, since in
practice we only scan for a limited band of positive frequencies and use the Fourier domain symmetry to
compute the negative frequencies. Figure 4a shows the computational times of ASHRT and Stolt operator
with and without zero padding. Zero padding is sometimes required to reduce artifacts associated with f − k
interpolation. Figure 4b shows the improvement in the computational time of Stolt with and without zero
padding compared to ASHRT. It is clear that an implementation of the ASHRT via Stolt operators can lead
to a significant saving in computational costs. This is very important for processing large data set with a large
number of pseudodeblended cubes.

Inversion

We assume that the data are contaminated with noise and therefore we pose the estimation of m via the
minimization of the vector of residuals

r = d−Lm . (5)

This is an ill-posed problem and, therefore, a regularization term must be included to estimate a unique and
stable model m. For example, the `2 regularization term results in smooth estimates of m. On the other hand,
and `1 regularization term induces solutions that are sparse. The inversion problem can be formulated by
minimizing the following cost function

J =‖r‖p
p +µ‖m‖q

q

=‖d−Lm‖p
p +µ‖m‖q

q. (6)

where the first term on the right hand side is the misfit term and the second term is the regularization term. In
both terms we have assumed `p and `q norms are given by the general expressions `p =∑i |ri|p and `q =∑i |mi|q.
By minimizing the cost function with respect to the unknown vector of Radon coefficients m one finds a solution
that honours the observations d. The parameters p and q represent the exponent of the p-norm of the misfit
and the q−norm of the model regularization term, respectively. Claerbout and Muir (1973) proposed using
p = 1 when the data is contaminated with erratic noise to estimate model that is robust. Since the Radon
model is expected to be sparse, we can also use q = 1 to estimate a sparse model (Sacchi and Ulrych, 1995;
Trad et al., 2003).
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Figure 4 Comparing operators (a) Computation times. (b) Stolt computation times compared to
ASHRT.

Examples

We tested the robust Stolt-based ASHRT with one synthetic and one marine data set from the Gulf of Mexico.
Both data sets are blended numerically with a 50% time reduction compared to the conventional acquisition.
The blending scheme represents one source firing with random delays. The data are pseudodeblended into
common receiver gathers to obtain Figures 5a and 6a. Stolt model estimated from the pseudodeblended
common receiver gather via robust inversion scheme for each data set is shown in Figures 5b and 6b. The
data recovered from the robust Radon models is shown in Figures 5c and 6c. The error of the estimated data
is shown in Figures 5d and 6d. The quality of the recovered data is measured using the following expression

Q = 10Log
‖doriginal‖2

2

‖doriginal−drecovered‖2
2
. (7)

The Q values for the recovered synthetic data common receiver gather is 25.33 dB and for the real data common
receiver gather is 11.55 dB.

Conclusions

We have implemented Stolt operator to eliminate erratic incoherent noise that arises in common receiver
gathers of blended sources data. We showed that source interferences in common receiver gathers could be
removed by Stolt operator. Stolt operator is a more computationally efficient approach to apex shifted Radon
transform. Since Stolt operator is implemented in f − k domain, it can be used in combination of non-uniform
Fourier transform to interpolate missing traces.
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velocity estimated using p = 1,q = 1 inversion. (c) Data recovered by forward modelling p = 1,q = 1
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