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Abstract 
 

Wavefield extrapolation by spatially variable phase shift is currently a migration tool of importance. In this paper, we present a new prestack 
seismic migration algorithm using the Gabor transform with application to the Marmousi acoustic dataset. The imaging results show a very 
promising depth imaging algorithm, which is competitive with the best depth imaging algorithms. The Gabor depth-imaging algorithm 
approximates generalized phase-shift-plus-interpolation (GPSPI) wavefield extrapolation using a Gabor, or windowed Fourier, transform to 
localize the wavefield. The key to an efficient algorithm is to develop an adaptive windowing scheme that only localizes the wavefield as 
required by the lateral velocity variation. If there is no lateral velocity variation then no localization (windowing) is required. When velocity 
varies rapidly, then many, relatively narrow, windows are required for accurate wavefield extrapolation. We present the details of an adaptive 
windowing method that has a controlled phase error. Programs have been coded with the adaptive windowing algorithm, which substantially 
reduces the computational burden in wavefield extrapolation when compared to the full GPSPI integral. We will illustrate the performance of 
this algorithm with images from prestack depth migration of the Marmousi dataset. 
 

Introduction 
 
Migration with Gazdag (1978) phase shift method can only accommodate constant lateral velocity in any depth step, which is unrealistic for 
many practical applications, where velocity structures are often heterogeneous with strong lateral velocity fluctuations. To address lateral 
velocity variations in phase-shift wavefield extrapolations, phase shift plus interpolation (PSPI) was proposed by Gazdag and Sguazzero (1984) 
using a set of reference (laterally homogeneous) velocities to calculate the corresponding extrapolated wavefields; the final extrapolated 
wavefields are obtained by interpolating with specific velocities corresponding to certain lateral positions. Stoffa et al (1990) gave an 
alternative extrapolation algorithm, split-step Fourier migration, dealing with lateral velocity variation while keeping the advantages of the 
phase-shift method, i.e., accuracy and efficiency. Other phase-shift wavefield extrapolation methods such as `phase-screen propagator' (Wu and 
Huang, 1992; Roberts et al., 1997; Rousseau and de Hoop, 2001; Jin et al., 2002) also provide for accurate imaging with abrupt velocity 
variations in such geological settings as salt-dome environments. Margrave and Ferguson (1999) used a nonstationary phase shift (NSPS) 
method and a generalized phase shift plus interpolation (GPSPI) to improve migration results, where wavefield extrapolations were done totally 
in the Fourier domain using arbitrary velocity variations. Our wavefield extrapolation method follows Jin and Wu (1998) and approximates 
GPSPI with a Gabor extrapolator. We also have control over speed and accuracy of Gabor wavefield extrapolations with the help of the 
adaptive windowing algorithm by Grossman et al., (2002). In the following sections, we will demonstrate the adaptive Gabor wavefield 
extrapolation algorithm and some imaging results created by these algorithms. 
 

Gabor Wavefield Extrapolation Theory 
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The Gabor transform 
 
The continuous Gabor transform pair is written as (following Margrave and Lamoureux (2001)) 
 

 
 

and 
 

 
 

where xT denotes transverse coordinates (e.g., xT = x in 1D, xT(x, y) in 2D). s(xT) is the input signal, Vgs(xT, kT) is the Gabor spectrum of s(xT), 
g(xT - xT') is an analysis windowing function with its centre at x'T , γ(xT − xT') is a synthesis windowing function, and kT is the coordinate in 
the wavenumber domain corresponding to xT. ℜ denotes real domain for integrations. Equation (1) is in fact a Fourier transform of a windowed 
version of signal xT. 
 
Equation (1) is used to calculate the Gabor spectrum of s(xT) in order to recover the original signal s(xT) from its Gabor spectrum Vgs(xT', kT), 
analysis and synthesis windows must satisfy 
 

 
 
(Margrave and Lamoureux, 2001), which is called a partition of unity (POU). The analysis windows could be any kind of mathematical 
functions. However, in our wavefield extrapolation applications, we choose functions with a localization property. In this way, we may 
represent our wavefield extrapolator depending on local velocities with a small error. Gaussian windows are good candidates, and we have 
chosen them for this paper. We also choose the synthesis window as unity, that is, we do no localization in the synthesis process. 
 
Wavefield extrapolation with the Gabor transform 
 
The generalized phase shift plus interpolation (GPSPI) wavefield extrapolation is formulated as (Margrave and Ferguson, 1999; Margrave et al., 
2004) 
 

 
 

where 
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Δz is the step size of extrapolation in z (vertical) direction, ω is temporal frequency and ν(xT) denotes lateral velocities along a slab with 
thickness Δz . Equation (4) extrapolates wavefields at depth z down to depth z + Δz in the frequency-wavenumber domain. To develop a Gabor 
approximation to equation (4), we introduce the approximation 
 

 
 
where Z denotes integer collection, Ωj is a family of windows forming a POU (refer to equations (8)), the discrete form of POU), Sj(xT) is a 
split-step Fourier operator for phase correction in the Gabor imaging, j (kT, Δz) is a wavefield extrapolator with reference velocities νj, which 
are 
 

 
 
and 
 

 
 
respectively. Notice that in equation (10), kz is still calculated with equation (6), using the reference velocity νj corresponding to a specific 
window Ωj (see equation (11)) instead of ν(xT). Using approximate wavefield extrapolator (7) in (4) gives 
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Equation (12) specifies our Gabor wavefield extrapolator. 
 

Gabor Wavefield Extrapolation with Adaptive Windowing Method 
 
If analysis windows in Gabor wavefield extrapolations are uniformly distributed along the lateral dimensions, we will, in most circumstances, 
have excessive redundancy in computations. That is, the algorithm without adaptive windowing usually calculates more windowed Fourier 
transforms than it requires. For example, we know that for homogeneous media, we only need one window instead of many, where the GPSPI 
method degenerates into Gazdag (1978) Fourier migration (phase shift with constant velocity) in laterally homogeneous media. If the lateral 
velocity structures in a slab are not extremely inhomogeneous, we can use fewer windowed Fourier transforms in wavefield extrapolations than 
we do in rapidly varying velocity models. Adaptive windowing algorithms are suggested to deal with different types of lateral velocity 
structures met in Gabor wavefield extrapolations. At this time, we use the Grossman et al. (2002) algorithm, which uses lateral velocity 
gradients to determine the number of windows needed in wavefield extrapolations. 
 

Imaging the Acoustic Marmousi Velocity Structures with the Gabor Extrapolator 
 
The Marmousi synthetic data set has been widely used as a benchmark for testing depth-imaging algorithms. The Marmousi velocity profile 
used in our depth imaging is shown in Figure 1 (a). In the Marmousi synthetic data set, we have 240 shot records, each of which has 96 traces, 
with time extending to about 2.9 seconds. For each shot record, there are 241 extrapolation steps with step size Δz = 12.5 meters. 
 
Before we discuss the imaging results, we explain the parameter used in the adaptive windowing algorithm. We call this parameter `threshold', 
which is used to set the threshold in terms of the relative velocity variation (related to the lateral velocity gradients). For example, when 
threshold = 5, we mean that 1/5=20% of the mean velocity in the current window is set as the threshold; if velocity difference between the 
mean velocity of the current window and that of the next neighbouring window along the lateral dimension exceeds this threshold, we will not 
merge the next window into the current one. Otherwise, we do. That is, if the difference between the mean velocity of the current window’s and 
that of the next one is smaller than the threshold set by `threshold', the next window is merged with the current window and the new combined 
window works as the `current' window. If not, we will leave the current window as it is and acquire the next as the `current' window, and repeat 
the process until we reach the edge of the lateral dimension. For mathematical details of the algorithm, see Grossman et al. (2002). If 
`threshold' is smaller, fewer windows will be used, and vise versa. In imaging results Figure 1 (b) and (c), we used a threshold of 5. These are 
the cases in the Marmousi imaging with the most modest number of windows assigned by the adaptive windowing algorithm. We see that both 
are no better than the image in Figure 1 (d), where a threshold of 10 is used. Looking at the fault regions and the bottom part of the images in 
Figure 1 and examining the target reservoir, from 6000 m to 7500 m at about depth 2500 m; we can see that the reservoir is adequately imaged 
in (d), but not in (b) and (c). We conclude that more windows means better imaging results, but more expensive to calculate them. Therefore, 
with this parameter (threshold) we can control the quality (accuracy) of the Gabor imaging. i.e., we have freedom to trade between accuracy 
and efficiency in the Gabor depth imaging. 
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Figure 1. Marmousi Velocity Model and Gabor Imaging Results. (a) windowing parameter threshold=5 without the split-step Fourier 
operator to correct phases in wavefield extrapolation with the Gabor wavefield extrapolator; (b) windowing parameter threshold=5 
with the split-step Fourier operator to correct phases in the Gabor wavefield extrapolation; (c) windowing parameter threshold=10 
with the split-step Fourier phase corrections. We can see from these three imaging results that with more windows used, the imaging 
results are better (compare (b) and (c)), and that with the phase correction, the imaging results are also better (compare (c) and (d)). 
On the PC with a CPU of 3.0 GHz, for the Gabor imaging of Marmousi velocity model with threshold=5, the CPU time is about 38 
hours; if threshold=10 is used, CPU time will nearly double. 

Datapages/Search and Discovery Article #90211 CSPG© 2015 CSPG/CSEG/CWLS Convention 2006, What’s New? Where is Our Industry Heading? Calgary, AB, Canada, May 15-18, 2006



 
Figure 1 (b) and (c) are used to show how the split-step Fourier correction plays an important role in the Gabor depth imaging. Figure 1 (b) 
shows the Gabor imaging result without the split-step Fourier correction; Figure 1 (c) shows the result with the split-step Fourier correction. 
Both imaging results are calculated with the same windowing parameter, threshold=5, which means there is no imaging difference caused by 
the adaptive windowing. Without the split-step Fourier operator to correct phase in Gabor extrapolations, the imaging result is very poor 
compared to the one with the split-step operator. Examining Figure 1 (b) and (c) in the lower parts of the images, we can nearly see the imaged 
reservoir in (c) but not in (b). 
 
To see how the adaptive windowing algorithm works in the Marmousi velocity model, in Figure 2 we show `windows versus the depth and the 
lateral coordinates (offsets)' corresponding to the dimensions of the Marmousi velocity model used in the Gabor imaging. The figure is created 
with the Gabor imaging process with a threshold of 20 (a finer windowing scheme); the corresponding Gabor depth imaging result is shown in 
Figure 3 (a), to be compared to the image generated by the FOCI (Figure 3 (b)). 
 
To show how well the Gabor extrapolator works, we use a FOCI (Margrave et al., 2004) Marmousi imaging result to compare with the Gabor 
Marmousi imaging result (see Figure 3 (a) and (b)). We see that, overall, the Gabor imaging algorithm gives a very good imaging result for the 
Marmousi velocity structures. Compared with the FOCI imaging result, the Gabor imaging method yields a very clear image of the Marmousi 
velocity model, though the FOCI seems to give more detailed and enhanced structural information in those over-thrust regions. The Gabor 
extrapolator may do as well as the FOCI in these regions with a more detailed windowing scheme. i.e., we can use more windows to get images 
that are comparable with the FOCI in those over-thrust regions, but the processing time will increase. In the lower part of Marmousi model, 
especially, the region of the anticline enclosing the target reservoir, both imaging methods do good jobs. The Gabor method creates clearer 
image just above the anticline than the FOCI does, while the FOCI images better inside the anticline. The Gabor extrapolator is slower than the 
FOCI for comparable results. Nevertheless, we have a hope to improve the accuracy and speed of imaging with the Gabor extrapolator by using 
some new adaptive windowing algorithms and different window sets. 
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Figure 2. Windowing Marmousi Velocity Model with the Adaptive Windowing Algorithm. In (a), the units of the scale on the right are 
in m/s; in (b), the units of the scale on the right are in number of windows. Note that the transverse coordinates in (b) is not the true 
coordinates. The figure in (b) consists of 240 columns of `windows versus depth'. These columns are created during the shot migrations. 
Each of these 240 columns `windows versus depth' corresponding to a velocity `piece' adapted from the whole Marmousi velocity 
model used for a single shot migration. We put the true transverse coordinates into the figure to make it roughly comparable with the 
transverse coordinates in the velocity model (a) to see how the windows are distributed. 
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Figure 3. Marmousi Imaging Results. (a) The Gabor imaging result with threshold=20 in (a) was created by a PC (3 GHz CPU) in 
about 112 hours; (b) FOCI imaging result runs on a common PC for about 20 hours. 
 

Conclusions 
 
The Gabor extrapolator is a very promising imaging tool in seismic depth migration. The Gabor imaging results have shown that we can get 
accurate depth images for complicated velocity structures such as the Marmousi acoustic velocity model, which is a solid basis for further 
research and exploration of the new imaging algorithm. The Gabor extrapolator can be used to image velocity structures as accurately as we 
may require. Computation (imaging) speed has been highly improved when the adaptive windowing algorithm is integrated into the Gabor 
wavefield extrapolation. 
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