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Summary 

In AVO/AVA inversion, a linearized form of the Zoeppritz equations known as the Aki-Richards 

approximation and variants are used to model RP. This approximation can be viewed as a linear 

decomposition of the full reflection coefficient into contributions from the reflectivities of individual 

medium parameters. A forward/inverse series framework leads to an alternative approach to this type of 

decomposition. The first order terms in the decomposition are qualitatively similar to the Aki-Richards 

approximation, with second- and third-order terms correcting the approximation at large angle and large 

contrast. We test the approach both for acoustic and elastic reflection coefficients. In the elastic case, where  

forward/inverse methods of the kind we use require a consideration of both RP and RS, we proceed in an 

approximate fashion using RP only. In spite of the approximation, the low order nonlinear terms provide a 

significant increase in accuracy over the linear/Aki-Richards approximation in several large contrast/large 

angle model regimes. Separately determining individual reflectivities could provide useful input to 

bandlimited impedance inversion, or enhance our ability to extrapolate data from small to large angle. 

Introduction 

Practical inversion of amplitude information in reflection seismic data (e.g., Castagna, 1993; Downton & 

Ursenbach, 2006) is based on linear-approximate solutions of the Zoeppritz equations, in particular that of 

Aki and Richards (2002) (hereafter referred to as AR).  Although the Zoeppritz equations can be solved 

numerically (and even analytically, if you don't mind a mess), the linearized solutions have historically won 

out over the more complex exact forms as practical tools.  One of the reasons for this is that they may be 

viewed as direct decompositions of the full RP coefficient into contributions from reflectivities due to 

individual parameter variations (e.g., Goodway, 2006).  For instance, the AR approximation 
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in which VP, VS and ρ represent the mean values of P-wave velocity, S-wave velocity and density 

respectively across the boundary, can be see to explicitly express RP in terms of 
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where superscripts L and U signify the lower and upper media respectively.  These fractions are evidently 

equivalent to the reflection coefficients at normal incidence that would have been measured had only those 

individual parameters varied. The power of such a decomposition, beyond the analytical clarity it brings, is 

that with these reflectivities in hand, well-developed methods for normal-incidence, single-parameter 

bandlimited impedance inversion (e.g., Walker & Ulrych, 1993) may be straightforwardly employed to 
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complete the inversion. Still, there is the matter of the inexact nature of AR and the many approximations 

deriving from it (e.g., Shuey, 1985), and the error that accrues at large contrasts and large angles.  There 

have been several notable attempts to enhance accuracy by for instance providing higher-order corrections 

to AR.  Such corrections have been constructed based on Taylor's series expansions with respect to both the 

model parameters within the Zoeppritz equations (Ursin, & Dahl, 1992), and with respect to the ray 

parameter (Wang, 1999). In this paper we take another approach, using the tools of direct inversion, which 

have been developed of late for the determination of parameter contrasts from reflection coefficients (e.g., 

Zhang & Weglein, 2009; Innanen, 2011).  Here we use them to decompose acoustic and elastic reflection 

coefficients into their component reflectivities. We discuss a formula for the reconstitution of the full 

acoustic multiparameter reflection coefficient in terms of several individual reflectivities.  Interestingly, 

within this multiparameter acoustic configuration, the same formula is found to approximate RP, regardless 

of which parameters vary, how many of them vary, and regardless of which experimental variable(s) RP 

varies over.  The elastic version, quoted next, is at present approximate, but in many regimes of large 

contrast/angle the accuracy of the formula appears significantly higher than AR and other linearizations.    

Theory 

Let RP be the reflection coefficient associated with an interface across which N acoustic parameters, μ = (μ1, 

μ2, …, μN), have varied, from μ
0
 in the incidence medium, to μ

1
 in the target medium (for instance, these μ

might represent P-wave velocity and density, in which case μ = (VP,ρ) varies from μ
0
 = (VP

0
,ρ

0
) to μ

1
 =

(VP
1
,ρ

1
)). We introduce N additional reflection coefficients Rμ = (Rμ1, Rμ2, …, RμN), where Rμj is the

reflection coefficient associated with an interface across which only μj has changed (for instance, Rρ is the 

P-P reflection coefficient associated with an interface across which density varied from ρ
0 

to ρ
1
, and all

other parameters remained constant). RP is expressible, explicitly to third order, as 
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with fifth order and higher corrections straightforwardly available.  The series in (3) is an exact expression; 

the elastic equivalent, in P-, S- and ρ-reflectivities, Rα, Rβ, and Rρ respectively, is given approximately by 
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where 
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and W1 = (1/BX
2
)(1/2 – 1/B) – 1/8, W2 = 1 – 2B, W3 = W4 = W8 = -1, W5 = -(1/2)[1/(BX

2
)], W6 =

[1/(2X
2)

][1 – 9/(2B) + 7/(4B
2
)], W7 = 3/2 – B/2, and W9 = 4B-2.  Here X = sin θ and B = VS/VP.

The full derivation of equations (3) and (5) is beyond the scope of this abstract; instead let us 

generate equation (3) for one case; generalization is possible by repeating this for a range of cases and 

identifying the pattern.  We begin with the acoustic R for a boundary across which density and P-wave 

velocity vary: 
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Defining aP = 1 – (VP
0
/VP

1
)
2
, and aρ = 1 – ρ

0
/ρ

1
, and expanding equation (6) in these parameters and sin

2
 θ,

we have, evaluating at normal incidence, 
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We next perform the same expansions on versions of equation (6) in which only one of VP or ρ vary at a 

time: RVP = (VP
1
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Each of these 1-parameter relationships can be inverted by substituting, into (8), the inverse series aP = aP1 + 

aP2 +…, and aρ = aρ1 + aρ2 + …, in which the index i signifies ith order in RVP or Rρ, equating like orders, 

and sequentially solving for aP and aρ.  The formulas 
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thus produced, may be used to eliminate the perturbations in equation (7) in favour of RVP and Rρ. Re-

introducing variable θ, we obtain 
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which is equivalent to equation (3) evaluated for the 2-parameter, density/velocity case. 

Examples 

Let us examine this approach to decomposition in terms of its ability to accurately, and, with relatively low-

order truncations, reproduce reflection coefficients at large angle and large contrast.  Fig. 1 illustrates the 

use of equation (10) at various orders. Approximations are plotted for three configurations of medium 

properties.  In each plot, first order (blue), third order (red), and fifth order (green) approximations are 

compared to the exact reflection coefficient (black). The linearization is often close to the result achieved by 

the AR approximation (reduced to mimic an acoustic problem), and hence the blue line is a reasonably 

faithful guide to the accuracy to be expected from AR in each circumstance.  By third or fifth order 

significant improvement is noted. 

       Figure 1: Various truncations of equation (10).  Three configurations of medium parameters & large 

       contrast/large angle are shown. Black: exact R; blue: first order; red: third order; green: fifth order. 

In Fig. 2 we carry out much the same comparison, but using the elastic approximation in equation (4).  

Black is exact, blue is linear, and red is third order.  Similar increases in accuracy from the linear 

approximation, which is analogous though not identical to the AR approximation, are noted by third order. 
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       Figure 2: Various truncations of equation (4).  Three configurations of medium parameters & large 

       contrast large angle are shown. Black: exact R; blue: first order; red: third order; green: fifth order. 

Conclusions 

These approximations describe the fundamentally nonlinear relationships between measureable reflection 

coefficients and the notional 1-parameter reflectivities which underlie them.  There are several ways they 

could be used.  First, via a nonlinear regression the best-fit reflectivities could be estimated at normal 

incidence.  Then, impedance inversion methods could be used on each reflectivity function to determine 

profiles. Second, the equations could be used to extrapolate data to high angles. Also, there is no reason to 

limit the reflectivity decompositions to those in VP, VS and ρ.  As discussed by Goodway (2006), often 

Lamé parameters λ, μ and ρ, or Lamé impedances λρ and μρ are more useful products; this approach would 

extend readily to include 1-parameter reflectivities with any of these parametrizations.  As far as limitations 

go, what we have developed is an AVA theory; none of the issues of transformation to an AVO theory have 

been broached as of yet.  Also, posing the elastic problem consistently, using both S- and P-reflectivities, 

thus going beyond equation (4), is a key step currently under investigation.  
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