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Summary  
AVO is a tool that can model amplitudes of wave signatures that reflect across an interface. These 
amplitudes can be modeled using the Zoeppritz equations for reflected P- and S-waves that are exact 
for a two-layer elastic model. In this paper, we will compare a derivation for poroelastic reflection 
coefficients due to Russell et al. (2011) with an approach based on a modification of the exact 
Zoeppritz equations. Before this comparison is made, a brief discussion of our method will be provided, 
in which we focus on how linear and nonlinear poroelastic reflection coefficients for P-waves are 
derived. Numerical examples will also be explored with these approximations.  

 

Introduction 
Russell et al’s. (2011) research introduces a linearized poroelastic approximation that uses reflectivity 
models in     ,     , and     . We will refer to this equation as Russell and Gray’s formula. As 
explained in the report, this approximation is derived from the Aki and Richards’ approximation. Our 
research has also proposed a method to derive an approximation with poroelastic models as mentioned 
above, as well as to extend the approximation into nonlinearity. We will show our derivation beginning 
from the Zoeppritz equations by re-creating a first-order poroelastic approximation. This approximation 
will then be compared to Russell and Gray’s formulation for consistency. We will then show the second 
and third-order approximations using examples. 

 

Poroelasticity: Review  
Poroelastic terms distinguish between geological layers that contain fluids and those which are fluid-
free. For instance, (  )    describes the compression wave speed of a medium that contains no fluid. 

This will allow us to differentiate between poroelastic velocities (saturated) and elastic velocities (dry). 
The theory of poroelasticity due to Biot (1949) and Gassmann (1951) leads to the forms for the 
equations for (  )    and (  )   . A fluid term ( ) accounts for the difference between poroelastic and 

elastic velocities. The equations for (  )    and (  )    are 
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where   is one of Lamé’s constants,   represents shear modulus,   represents bulk modulus,   is 
density, and   is the fluid term. Note that shear velocity does not include the fluid term. Without going 
into too much detail, this occurs due to the fact that the fluid term does not affect shearing motion and 
also knowing that          . The derivation of this occurrence is better illustrated by Russell et al. 

(2011). This fluid term is measured by the Biot coefficient   and a poroelastic constant   where 
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where      is the drained bulk modulus,    is the mineral bulk modulus,     is the fluid bulk modulus, 

and   is the porosity. 

 

Exact, linear, and nonlinear poroelastic AVO 
Our purpose is to re-derive AVO expressions along the lines of those of Russell et al. (2011), and then 
analyze any differences. To do so, we define model parameters that measure the contrast of a two-
layer model. These will be perturbations in fluid, shear modulus, and density and will be defined as  
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These perturbations will then be substituted into ratios found in the Zoeppritz equations (ratios of   ,   , 
and   across the reflecting boundaries). Using equations (1), (2), and (6), we have 
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for the shear wave velocity ratio, 
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for the density ratio, and 
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for the compression wave velocity ratio where      and      represent the dry and saturated       

ratios respectively. These ratios are then substituted into the Zoeppritz equations but let us write these 
equations first before making the substitution. We can observe density and velocity ratios in the 
Zoeppritz equations. With equations (7)-(9), we can make substitutions into the Zoeppritz equations 
and present these equations as defined by Keys (1989) in their substituted form 
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where the elements     for the first row are defined as 
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the elements of the second row are 
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the elements of the third row are 
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the elements of the fourth row are 
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and the elements of the vector on the right-hand side are 
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Using Cramer’s rule, we may solve for any of the reflection or transmission coefficients in equation (10). 
Our research focuses on     but we may use Cramer’s rule to solve for    ,    , or    . Cramer’s rule 
is the determinant of the augmented matrix divided by the pre-augmented matrix or 
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Performing this operation will result in a series of weighted perturbations such that 
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By truncating the expression in equation (12) such that only first order terms remain is 
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The equivalence of the approximations at small angle and contrast 
Russell et al. (2011) have derived and used a linearized approximation for PP reflection coefficients 
that is comparable to that of Aki and Richards (2002), but expressed in poroelastic terms. This 
derivation is comparable to other previously derived AVO formulas (Shuey, 1985; Smith and Gidlow, 
1987; Fatti et al., 1994) Russell et al. (2011) argue that the poroelastic form, 
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where the superscript ( ) signifies average properties, and   is the ray path angle with respect to the 
interface, is a more effective way of detecting fluid in the target medium. Equation (14) is referred to as 
the f-m-r equation. 
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In contrast, our approximation starts from the Zoeppritz equations. For small angles and small 
contrasts, it is equivalent to that of Russell and Gray, but it differs when contrasts are large, it adapts 
the linear term with a series of nonlinear corrections. Let us first demonstrate their equivalence. The 
average angle can be replaced with the incidence angle (which we use) when they are both small. Next 
let us compare our fluid perturbation with Russell and Gray’s fluid reflectivity. We have 
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Similarly         and        . Finally, the (       ) terms in equation (13) are equal to       in 

equation (14) for small angles. We may show that 
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We conclude that for small contrasts and small angles, Russell and Gray’s approximation and our 
approximation are equivalent. 

 

Nonlinear poroelastic AVO 
With our method of deriving the poroelastic AVO equation, we may respond to larger contrast situations 
by including to higher orders, to account for nonlinearity. Our first order approximation contains three 
weighting coefficients, and provides an interpretable representation of a P-wave reflection. The second-
order corrections contain six terms and take the form 
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where the weighting coefficients are found in the appendix. The third-order correction contains ten 
terms and is written as 
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where the weighting coefficients are also found in the appendix. 

 

Numerical Results 
Lastly we examine the relative importance of the first-order, second-order and third-order components 

of our approximate poroelastic AVO expressions. In Figure (1) the     values derived from solution of 
the exact Zoeppritz equations, with the first and second-order poroelastic approximations. 

 

We do so by plotting, in Figure (1), exact vs. approximate     curves arising from four reflectors of 
increasing contrast, from 10% through 50%. We conclude that geophysically realizable (large) contrasts 
the nonlinear corrections can supply a significant up-tick in accuracy. 
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Figure 1: The relative importance of first, second and third order approximations as contrasts increase. In each 
panel, the blue curve is the exact     (real part), the black curve is the first order approximation, the magenta 
curve is the second order approximation, and the red curve is the third order approximation. The panels illustrate 
the approximations for increasing contrasts: (a) 10%, (b) 20%, (c) 40%, (d) 50%. 

 

Conclusions 
This research shows a method in which to derive a first, second, and third-order poroelastic AVO 
approximations. This derivation begins from the Zoeppritz equations where poroelastic perturbation 
parameters are defined and substituted back into the Zoeppritz equations. Using the Zoeppritz 
equations provided by Keys (1989), we may use Cramer’s rule to solve for any of the four coefficients 
found in the column vector in the left-hand side of equation (10). We chose to solve for     for 
purposes of surface seismic experiments and strong reflections. After deriving a first-order 
approximation, we compared it to Russell and Gray’s formula as shown by Russell et al. (2011), to 
show that these two forms are equivalent which we have shown. We have also shown the nonlinear 
correcting terms up to third order and demonstrate the ability of the nonlinear terms numerically with a 
few examples. As property contrasts become large, the third-order correcting terms provide a 
significant change in the     curves. 

 

For future work, we would like to explore the effects of linear and nonlinear inversion, apply our 
methods to field data, and to incorporate our tool into geophysical software. 
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Appendix 
The weighting coefficients for the nonlinear correcting terms in equations (17) and (18) are as 
follows: 
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