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Summary  

Networked systems require the consideration of the interactions between component parts as well as 
the parts themselves in understanding the properties of the system. In the case of hydraulic fracturing, 
the process can be regarded as the spread of a fractured state through an initially unfractured network 
of rock elements. In this study, we implement a spreading model in networks to evaluate the dynamics 
of the hydraulic fracturing process in various rock types. The corresponding results regarding the 
stresses that must be overcome, the areal extent and energy release in hydraulic fracturing were in 
qualitative agreement with empirical observations. 

Introduction 

Many macroscopic phenomena manifest as the result of a network of interacting agents and often 
exhibit dynamics that are reciprocal to its network structure, resulting in behavior that can exhibit 
nonlinearities. These network interactions govern phenomena ranging from collective behavior in 
schooling fish to the spreading of viruses in human networks. In these networked systems, the 
interactions between component parts are just as important as the parts themselves in defining the 
properties of the system (Motter and Albert, 2012). In addition, it is widely accepted that macroscopic 
phenomena do not depend on the microscopic details of the process, as in effective field theories that 
are applicable at some chosen length scale and ignores the substructure and degrees of freedom at 
shorter distances. Therefore, the description of seemingly complex phenomena can be greatly reduced 
in complexity by application of the above paradigms. In this study, we apply these concepts to hydraulic 
fracturing to investigate the dynamical process under which hydraulically induced fractures propagate in 
various rock types. These simplifications allow us to discard the complex fluid flow and fracture 
mechanics in modeling the dynamic response of hydraulic fracturing (i.e. Lutz, 1991). It should be noted 
that the simplified approach only provides qualitative descriptions and lacks the rigor in understanding 
the phenomenon at a fundamental level. It does however provide an alternative conceptual view of the 
problem.  
Many observations concerning fracture propagation in so called brittle or ductile rocks have been well 
established with the aid of empirical data, where brittleness is often associated with higher quartz 
content and a relative low for the Poisson’s ratio. For example, engineering data such as the 
instantaneous shut in pressure (ISIP), which provides an indication for the stress that must be 
overcome for fracture propagation, is found to correlate with Poisson’s ratio (i.e. Maxwell et al., 2011). It 
is also generally observed that fractures propagate further in brittle rocks while propagation is more 
localized in ductile rocks, as suggested by microseismic event locations. In addition, microseismic 
moment densities are observed to decrease with increasing brittleness.  
In the following, we implement a simple network spreading model in an attempt to model the dynamics 
of the hydraulic fracturing process and evaluate the corresponding fracture propagation response for 
various rock types.  
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Fracture Spreading Model 

Here, we adopt the abstraction of a network to represent a rock mass with interacting elements, where 
the network consists of a set of nodes connected by lines or edges. The network is a purely theoretical 
object but provides an extremely useful representation of complex systems with interacting 
components. To investigate the dynamics of fracture propagation through a network of rock elements, 
we implement a spreading model proposed by Watts (2002) for the description of global cascades on 
random networks. In the model, a binary decision process with externalities is considered. For a given 
network, each individual in the population, represented by a node, must decide between two alternative 
actions, where their decisions are based solely on the actions of other members in the population. In 
the case of hydraulic fracturing, the process can be regarded as the spread of the fractured state in a 
network of initially unfractured rock elements. For the model specification, we consider a population 
where an individual agent observes the states (0 for unfractured or 1 for fractured) of its connected 
neighbors, where the range of connections is known as the degree, and if a certain threshold fraction, 
defined on the unit interval, is achieved, it adopts state 1, else it remains in state 0. To initiate the 
system, a set of seed nodes are placed in the network and the process is subsequently iterated through 
a series of time steps. A successful hydraulic fracture treatment is then defined by a cascade event, 
where if a cascade is triggered, state 1 spreads throughout the network and if a cascade is not 
triggered, the network remains in its initial state. 
To calculate the threshold, we implement the uniaxial strain condition for loading of an elastic solid 
given by 
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where  is the Poisson’s ratio and 1 and 3 are the maximum and minimum principle stress 
magnitudes respectively. For a given value of 1, a lower value of 3 can be achieved through lowering 
the value of , and according to the Mohr-Coulombe failure criterion (Coulomb, 1773), results in a 
larger Mohr circle and hence is more easily fractured. Since the quantity /(1-) is defined on the unit 
interval for all possible values of  between 0 and 0.5, it can readily be used for the threshold condition. 
Therefore, a material with a lower Poisson’s ratio is more easily fractured and thus requires less 
influence to achieve failure. 
To calculate the degree, we consider how information is transferred in an elastic solid. Upon the 
application of a stress, particle motion is excited through strain waves and propagates throughout the 
medium. Therefore, we associate the transfer of information regarding the state of stress through the 
mechanics of wave propagation. The wave equation can then be used to evaluate how energy 
propagates through an elastic solid and provide an indication for the network of connected nodes. In a 
3D homogeneous medium, the Green’s function for the scalar wave equation is given by 
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where c is the P-wave velocity, t is time, r is the radial distance from the source location and  
represents an impulse function. According to equation 2, the rate at which the amplitude decays is 
inversely proportional to r and is scaled by the inverse of the P-wave velocity. Therefore, a material with 
a higher value of c corresponding to the effective medium, experiences more amplitude decay at a 
given radial distance r from the source point and results in a more localized connectivity. 

Rock Model 

For the evaluation of the fracture propagation response in different rock types, we take the mean of the 
Hashin-Shtrikman bounds (1963) for a two-phase material consisting of quartz and clay with varying 
mineral fractions. With this approach, we avoid the ill-defined concept of brittleness which is not a 
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fundamental property of an elastic solid. Figure 1 shows the upper and lower bounds and mean for the 
P- and S-wave velocities of the two phase material calculated using the values in Table 1. 

 
Figure 1: Hashin-Shtrikman upper and lower bounds and mean for the a) P- and b) S-wave velocities for a two-

phase material consisting of quartz and clay. 
Table 1: Density () and P- () and S-wave () velocities used for mineral end members (From Greenberg and 

Castagna, 1992). 

Mineral  (g/cc)  (km/s)  (km/s) 

Quartz 2.65 6.05 4.09 

Clay 2.66 4.32 2.54 

Dynamical Modeling 

As the dynamics of the hydraulic fracturing problem are not easily amendable to analytical treatment, 
we solve the system numerically and analysis the corresponding results. The simulations were 
performed in 2D for each set of mineral fractions ranging from pure clay to pure quartz. As mentioned 
above, we attribute a successful hydraulic fracture treatment with a cascade event triggered by a 
certain number of initially active nodes. The properties of interest are then the number of seed nodes 
required to trigger a cascade, the areal extent of the cascade and the energy output for each set of 
mineral fractions.  

 
Figure 2: a) Cascade boundary and b) simulated area as a function of the volume of quartz. 

Figure 2 shows the phase diagram illustrating the cascade boundary (a) and the stimulated area (b) as 
a function of the volume of quartz. The simulations demonstrate that less effort is required to achieve a 
cascade and a larger area is stimulated for a more brittle rock, which is consistent with empirical 
observations.  
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Figure 3: a) Stimulated area and b) change in stimulated area as a function of time. 

Figure 3 shows the stimulated area (a) and the change in stimulated area (b) as a function of time. In 
Figure 3b, note the nonlinear behavior at small time steps for low values of the volume of quartz. This is 
attributed to the interactions between component parts that result in nonlinearities in defining the 
properties of the system as a whole.  

 
Figure 4: Spatial distribution of total energy output for a) 70%, b) 40% and c) 10% quartz. 

Figure 4 shows the normalized spatial distribution of activated nodes for various sets of mineral 
fractions that provide an indication for the spatial distribution of total energy output. Since we associate 
the activation of a node as a fracture creation event, the energy output corresponds to the generation of 
a microseism. Therefore, the distributions can be related to the microseismic moment density in 
different rock types. As the volume of quartz decreases, the energy becomes more localized, which is 
consistent with the observation that microseismic moment densities increase in more ductile rock. 

Conclusions 

The dynamics of the hydraulic fracturing process were evaluated through a spreading model in 
networked systems for rock types consisting of varying mineral fractions of quartz and clay. This was 
performed to provide an alternative view of the mechanisms that underlie the empirical observations 
documented by various authors concerning the fracture propagation response in brittle and ductile rock. 
The results of the numerical simulations were in qualitative agreement with the observations regarding 
the relationship between ISIP and Poisson’s ratio and the microseismic response in various rock types.  
As the hydraulic fracturing process is a dynamical system consisting of numerous interacting rock 
elements, the interactions between component parts as well as the parts themselves must be 
considered in understanding the properties of the system. For this reason, nonlinearities are anticipated 
and are observed in the numerical modeling. 
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