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Summary 
In previous papers we described a family of multidimensional filters to suppress random noise 
based on matrix-rank reduction of constant-frequency slices. Here we extend these filters to 
perform multidimensional trace interpolation. This requires rank reduction when some, perhaps 
most, of the matrix elements are unknown, a procedure called matrix completion or matrix 
imputation. We show how this new interpolator improves the spatial resolution of 3D data when 
applied prior to prestack migration. 

Introduction 
For optimal 3D prestack migration, input traces should be evenly and densely sampled in: 

 Inline midpoint

 Crossline midpoint

 Offset

 Azimuth

Otherwise one gets poor cancelation of overlapping migration impulse responses, resulting in 
migration artifacts (Gardner and Canning, 1994). Other benefits of an even and dense trace 
sampling are that it: 

 Reduces the acquisition footprint

 Reduces spatial aliasing

 Improves multiple removal

 Improves the continuity of shallow events

 Improves amplitude variation with offset (AVO) analysis

Due to physical and financial constraints, acquisition geometries rarely deliver a perfect spatial 
sampling. Thus in recent years we’ve seen a surge in interest in prestack trace interpolation to 
improve spatial sampling prior to migration. Some popular interpolation methods for this are: 

MWNI  Minimum Weighted Norm Interpolation (Liu, 2004; Liu and Sacchi, 2004; Trad 2009) 
POCS Projection Onto Convex Sets (Abma and Kabir, 2006) 

ALFT Anti-Leakage Fourier Transform (Xu and Phan, 2004; Xu, Zhang, et al, 2004) 

Abma (2009) gives a brief comparison of these methods. All of them interpolate simultaneously 
in multiple spatial dimensions, a far more powerful approach than cascading a one-spatial-
dimension interpolator. Here we present a new multidimensional interpolation algorithm based 
on matrix-rank reduction working on constant-frequency slices, and demonstrate its use on a 3D 
data set. 
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Method 
We use a strategy called matrix-rank reduction (see, for example, Trickett, 2003), also called 
truncated singular-value decomposition, principal-component analysis, subspace filtering, and 
many other names. The singular-value decomposition allows one to decompose a p-by-p matrix A 
into the sum of p matrices of rank one, called weighted eigenimages: 
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A rank-k approximation to matrix A is found by summing the first k < p weighted eigenimages: 
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Rank reduction is useful for noise suppression as coherent energy tends to fall into the first few 
eigenimages, while random energy is more evenly distributed across all eigenimages. Here’s 
how it can be used to suppress random noise on constant-frequency slices of a 
multidimensional grid of traces (Trickett & Burroughs, 2009): 

Take the Discrete Fourier Transform (DFT) of each trace in the grid. 
For each frequency within the signal band... 

 { 
1. Place the complex trace values for this frequency into a matrix A (somehow).

2. Reduce the matrix to rank k.

3. Recover each trace value from the rank-reduced matrix by averaging all
elements where that value was originally placed in matrix A.

     } 
Take the inverse DFT of each trace. 

The method is complete once we know how to form matrix A. Given a one-dimensional series of 
n traces having a constant-frequency slice ci, i = 1…n, we form a complex-valued Hankel matrix 
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The resulting noise suppression is called f-x Cadzow filtering (Trickett, 2008). Two-dimensional 
Cadzow filtering forms a Hankel matrix of Hankel matrices. Three-dimensional Cadzow filtering 
forms a Hankel matrix of Hankel matrices of Hankel matrices, and so on for any number of 
spatial dimensions. 

This is not the only way to form matrix A. Trickett and Burroughs (2009) describe two other 
strategies, referred to as eigenimage and hybrid eigenimage-Cadzow. 

How can we modify these noise-suppression filters to perform trace interpolation? The central 
problem to be solved is this: 

 Perform matrix rank reduction when some, perhaps most, of the matrix 
elements are unknown. 

This is called matrix completion or matrix imputation, and many algorithms have recently been 
developed to solve it (Chen and Suter, 2004; Kurucz et al, 2007; Olson and Oskarsson, 2009). 
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3D Example 
For prestack 3D data we must decide which domain to filter in. Trad (2009) lists various options. 
Here we interpolate in the inline and crossline midpoint, offset, and azimuth dimensions. 
Commercially this is often called “5D interpolation” (frequency plus four spatial dimensions), 
although mathematically the interpolation is carried out only in the four spatial dimensions.  The 
natural rank-reduction filter for this is f-wxyz Cadzow, also referred to as C4. 

Another possible 5D interpolation domain is common-offset vector (Cary, 1999), where the 
spatial dimensions are inline and crossline midpoint, and inline and crossline offset. 

Figures 1 and 2 show the results of prestack interpolation of a 3D volume. Although the noise-
suppressing power of these filters is valuable for cleaning up the data, it’s the interpolation of 
near-offset traces that produces a dramatic reduction in the acquisition footprint, and 
consequently a significant improvement in spatial resolution. 

Conclusions 
Multidimensional rank-reduction-based random-noise suppression can be extended to perform 
trace interpolation. This new interpolator can be used to improve the spatial sampling of 
prestack seismic data, thus improving the resolution of the final seismic section. It seems 
particularly effective at suppressing the acquisition footprint. 

Abma (2009) compared the properties and performance of three prestack interpolation 
methods. It would be interesting to see how this new method matches up. 

Acknowledgements 
Thanks to Conoco-Phillips for permission to show their data. Also thanks to the crew at Kelman 
Technologies for their help, and in particular to Doug Kuervers, Ruth Peach, and Pat McKenny. 
This research was partially funded by the National Research Council of Canada. 

References 
Abma, R. and Kabir,N., 2006, 3D interpolation of irregular data with a POCS algorithm: Geophysics, 71, no. 6, E91-E97. 

Abma, R., 2009, Issues in multi-dimensional interpolation, 79th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded 
Abstracts, 1152-1155. 

Cary, P., 1999, Common-offset vector gathers: an alternative to cross-spreads for wide-azimuth 3-D surverys, 69th Ann. 
Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1496-1499. 

Chen, P. and Suter, D., 2004, Recovering the Missing Components in a Large Noisy Low-Rank Matrix: Application to SFM, 
IEEE Trans. On Pattern Analysis and Machine Intelligence, 26, no. 8, 1051-1063. 

Gardner, G. H. F. and Canning, A., 1994, Effects of irregular sampling on 3-D prestack migration, 64th Ann. Internat. Mtg., 
Soc. Expl. Geophys., Expanded Abstracts, 1553-1556. 

Kurucz, M., Benczur, A. A., and Csalogany, K,, 2007, Methods for large scale SVD with missing values, Proc of KDD Cup 
and Workshop.  

Liu, B. 2004, Multi-dimensional reconstruction of seismic data: Ph.D. thesis, University of Alberta. 

Liu, B. and Sacchi, M., 2004, Minimum weighted norm interpolation of seismic records, Geophysics, 69, 1560-1568. 

Olsson, C. and Oskarsson, M., 2009, A Convex Approach to Low Rank Matrix Approximation with Missing Data, 
Scandinavian Conference on Image Analysis, Springer-Verlag. 

Trad, D., 2009, Five-dimensional interpolation: Recovering from acquisition constraints, Geophysics, 74, V123-V132. 

Trickett, S. R., 2003, F-xy Eigenimage Noise Suppression, Geophysics, 68, 751-759 

Trickett, S., 2008, F-xy Cadzow Noise Suppression: 78th Annual International Meeting, SEG, Expanded Abstracts, 2586-
2590. 

Trickett, S. and Burroughs, L., 2009, Prestack Rank-Reduction-Based Noise Suppression, CSEG Recorder, 34, no. 9, 24-
31. 

Xu, S. and Pham, D., 2004, Seismic Data Regularization with Anti-Leakage Fourier Transform, EAGE 66th Conference, 
Paris, France. 

Xu, S., Zhang, Y., Pham D. L., and Lambare, G., 2004, On the orthogonality of anti-leakage Fourier transform based seismic 
trace interpolation: 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts (SP 3.7). 

AAPG Search and Discovery Article #90172 © CSPG/CSEG/CWLS GeoConvention 2010, Calgary, Alberta, Canada, May 10-14, 2010



4 

Figure 1: A 3D common-midpoint gather separated into four azimuth sectors, (left) before and 
(right) after interpolation. Data courtesy of Conoco-Phillips. 

Figure 2: Left is a time slice of a 3D structure stack. Note the random noise and diagonal acquisition 
footprint. Middle has prestack rank-reduction-based noise suppression but no interpolation. Noise is 

reduced but the footprint remains. Right has prestack interpolation. The footprint is now mostly removed, 
resulting in improved spatial resolution. Data courtesy of Conoco-Phillips. 
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