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In this paper, we recover the amplitude of a seismic image by approximating the normal operator 
and subsequently inverting it. Normal operator (migration followed by modeling) is an example of 
pseudo-differential. curvelets are proven to be invariant under the action of pseudo-differential 
operators under certain conditions. Subsequently, curvelets are forming as eigen-vectors for such 
an operator. We propose a seismic amplitude recovery method that employs an eigen-value 
decomposition for normal operator using curvelets as eigen-vectors and to be estimated 
eigenvalues. A post-stack reverse-time, wave-equation migration is used for evaluation of the 
proposed method. 

Introduction 
In mid-90s, Hart Smith[1,2] introduced elements or shapes which are invariant under the action of 
pseudo-differential. His theory came to practice by design of such an element and its 
implementation by Candes and Donoho [3]. Since then it has been used in different area of signal 
and image processing. Candes and Demanent [4] showed how curvelets behave under the action 
of Fourier integral operators. They stated that under some condition a curvelet maps to another 
curvelet under the action of Fourier Integral Operator (FIO). Migration is a FIO in weak sense. It 
means that first order born approximation for the modeling operator obeys the FIO principles. 
When migration followed by modeling operator they formed normal operator which belong to an 
operator’s class called psudo-differential operators[Stein 5]. Inverting such an operator is in 
common interest for many researchers in seismic imaging discipline [Mulder, 6] [Claerboat, 7]. By 
having an almost accurate inverse of such an operator, the amplitudes of the reflectors can be 
recovered in a seismic image as well as the weak events in the seismic image can be illuminated.  

In the following sections, we show the action of normal operator on different curvelets with 
different locations, frequency supports, angles and scales. We show that under some conditions 
those curvelets can be considered invariant under the action of such an operator.  Following that 
we propose an eigen-value decompoisition solution for the normal operator using curvelets as 
eigen-vectors.  Finally, we investigate the performance of the method on the amplitude recovery 
of an imaging problem. In this work, we use a post-stack, two-way, wave-equation migration and 
modeling.  
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Curvelets Invariance 
A curvelet ��  is defined by its index � which is a triple j, l,k� � with j � 0,1,2,... is a scale parameter; 

l � 0,1,...,2[ j / 2]�1 is an orientation parameter ( x� 	 is the integer part of x ); and k � (k1,k2), 
k1,k2 
 Z  is the location parameter.  

A distinguished feature of curvelet is that the action of a pseudo-differential operator(� ) on 
curvelet elements is in some sense very simple. Roughly speaking, a curvelet ��  is mapped into 
another curvelet at a corresponding index �
�
, which is close, or identical to�. To be more specific, 
a pseudo-differential operator induces a mapping �� �
�
 with property that significant curvelet 
coefficients of �(�� ) are located very close to �, itself. Following theorem exists under certain 
conditions, 

Theorem 1. Let �  be a pseudo-differential operator with a symbol of order zero and �  is a 
bounded L2 -operator. Then following error bound exists, 

 �(�� ) � a(�)�� L2
� CN 2 j / 2� 	      (1)  

Because of space constraints, we cannot possibly give a proof for theorems 1. However, we can 
refer to the works have been done in the micro-local analysis of the pseudo-differential operators 
[6,7,8].  

Decomposition 
In seismic imaging, Normal operator is defined as action of migration followed by de-migration. 
This is an important operator since its inverse can correct for the inaccuracy created by migration 
process. Normal operator defined by � �KKT�� , where K  is the modeling operator (de-migration) 
and KT  is the migration operator.   

Restating the theorem 1 we propose following decomposition of normal operator 

 )2(            CDCT
�� �  

D�  is a diagonal matrix which contains the value of a(�)  for each index �,  C  and TC are curvelet 
and transpose of curvelet transform. 

This decomposition is direct consequence of theorem 1, which states that each curvelet acts as 
an eigen-vector for the normal operator. Thus we can decompose the normal operator in a form of 
eigen-value decomposition with curvelets as eigen-vectors and unknown eigen-values.  

Estimation of Eigen-Values 
To build �D  in eq.(2), we need to calculate a(�)  for each index �  which is infeasible. We propose 
a different method, which utilizes a reference reflectivity vector, r  and solve following equation on 
elements of �D , 

 � r � CTD�Cr  �CTdiag(u)d� �  � r           (3) 

Where Cru � and �d  is the diagonal elements of �D . 
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We choose the reference vector r as migrated image which is our closest possible guess to the 
ideal choice (i.e., original reflectivity). We need to solve Eq.(3) for �d , however this equation is 
underdetermined since the number of equations (size of model in physical domain) is less than 
number of unknowns (number of elements a(�) ). The reason is that the curvelet transform is 
redundant.  To find a unique solution for �d , we impose additional constraints on it.  

We impose a penalty term that avoids abrupt changes in the adjacent elements in the curvelet 
basis. In other word, we solve following optimization problem for �d  

 min
d�

 �� ||D� d� ||L2
��x ||Dxd� ||L2

��y ||Dyd� ||L2
  subject  to  CTdiag(u)d� �  � r   (4)  

Where D� ,Dx  and Dy  are the differentiation matrices along � , x  and y  coordinates in curvelet 
space. �[�]are the Lagrange multipliers associated with each differentiation. 

There is a simple solver for above optimization problem by solving following linear system of 
equations using linear solvers. 

Examples 
Figure 1 shows three different curvelets in different locations and angles before and after applying 
the normal operator. The curvelet with steep angle does not survive after the action of operator 
since it is not in the aperture of the operator. However, the curvelets that are in the support of the 
operator remain invariant under the action of normal operator. It can be seen that curvelet with 
steep angle is more attenuated than the flat curvelet. This can be corrected during the operator 
decomposition. 

Figure 2 shows the performance of our proposed method to approximate the action of normal 
operator and to recover the amplitudes by inverting it. Figure 2(a) shows the reflectivity model 
which is SEG-AA’ salt model. Figure 2(b) shows the action of normal operator (migrated-
demigrated) on the reflectivity shown in (a). The background velocity is SEG-AA’ velocity model 
which is sufficiently smoothed. Figure 2(c) shows the action of approximated normal operator 
using our proposed method on the reflectivity shown in (a). Relative error in this case is 10%. 
Figure 2(d) shows the amplitude recovered image by applying the inverse of the approximation 
(��1 � CTD�

�1C ) on the migrated image.  

Conclusion 
This work introduces a fast and robust approach for approximation of imaging operator, which can 
be used in amplitude recovery in seismic image. We formulated the approximation of normal 
operator as eigenvalue decomposition with curvelets as eigenvector. Applying the inverse of the 
decomposed operator on migrated image recovers image amplitude. Our proposed method is 
sufficiently faster than other krylov-based (i.e., CG, LSQR) methods since it evaluates the normal 
operator only once. In other paper of this proceeding we propose an inversion approach that 
utilizes this approximation to further enhance the SEG-AA’ salt image. 
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Figure 1. Invariance of curvelets under the action of normal operator, (a) three curvelets (same scale, different angles 
and positions), (c) Spectrum of the three curvelets shown in (a), (b) Normal operator (migration followed by modeling) 
applied on three curvelets shown in (a), background velocity is lens model, (d) Spectrum of (b) 
 

 
Figure 2. Amplitude recovery using eigenvalue decomposition of the normal operator, (a) SEG-AA’ reflectivity model, 
(b) action of normal operator on (a), (c) action of approximated normal operator on (a), (d) amplitude recovered image 
applying the inverse of approximated normal operator on (b) 
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