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Probabilistic Pay Flags and Reservoir Quality in Greater Burgan Field, Kuwait

In order to account for uncertainty in assignments of Reservoir Quality (RQ) flags (i.e., pay sands plus wet or swept
sands) for new reservoir modeling in Greater Burgan Field, Kuwait, a technique was developed to create flags that
reflect probabilistic analysis. This allows us to analyze the range of possible RQ within a single well (for better
reservoir management), and allows us to see the effect of RQ uncertainty on full-field reservoir models. The
technique is based on formation producibility, defined by porosity and permeability measurements from conventional
cores. These measurements are compared to key wireline log responses, which were then used to develop an
algorithm that could be applied to the entire field. We used a combination of log-curve crossplots such as Sw vs.
Vshale, Phie vs. Rt, etc., along with traditional porosity cutoffs to create our algorithm.

Whenever a RQ assignment is made, based on wireline logs, there is uncertainty in the interpretation. There are
many causes for this uncertainty: thin bed effects, shaly sands, tool resolution near bed boundaries, inconsistent log
measurements, etc. As an example, Fig. 1 shows a zone where gamma ray and neutron logs suggest that the
formation may be sandstone, while resistivity and density suggest shale. Our goal was to develop a method to reflect
all types of uncertainty in Burgan Field, and output a reasonable range of possible outcomes, using probabilistic
analysis to quantify the outcomes. Because of the sheer size of Burgan Field (current reservoir models contain 65
million cells), using vendor software to incorporate uncertainty is not practical, so the following method has been
applied to achieve our goal of accurately representing the uncertainty in log interpretation.

The first challenge was to build a series of criteria relating wireline log measurements to standard cumulative
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probability functions. For any well, a standard definition of the p10 function states that there is only a 10% chance
that the well contains less than the p10 amount (a pessimistic estimation). Likewise, the p90 function states that
there is a 90% chance that the well contains less than the p90 amount (an optimistic estimation). However, to create
payflags that can be transferred to geologic models, more detail is needed since well log data are sampled several
times per foot. Criteria were developed to provide a probability estimation for every sample in the well log, and
based on the log responses, assign a probability to that sample.

To develop these criteria, we assumed that non-reservoir could be identified, and anything else could be Reservoir
Quality. Non-reservoir can be identified using crossplots such as effective porosity vs. resistivity or Vsh vs. Sw. In
Fig. 2, core properties of plugs identified as non-reservoir are shown. In our wells, anything that has not been
identified as non-reservoir is assigned a p90 RQ flag. As a cross-check, when core data is compared to the p90 RQ
flag, reservoir rock should be observed in up to 1 out of 10 places where non-reservoir was assigned!! This has been
observed in several follow-up cores, so we feel the p90 criteria are quite robust.

Fig. 3 shows our p10 RQ guideline. At effective porosities above 24%, there is very little chance that the rock is non-
reservoir. Just below 24%, there seems to be a small but significant chance (about 10%) that the rock will be non-
reservoir. So by only counting the very best reservoir rock, this is a good place for the p10 cutoff. When comparing
the p10 flag to core, we occasionally see zones of silty low perm that have been assigned as p10 reservoir rock. This
can usually be traced to subtly-bad logs due to rugose borehole.

Unlike p90 and p10, it is difficult to physically define p50 RQ. Fig. 4 shows how we chose the guideline, about
halfway between the p10 and p90 cutoff. Comparing predicted results to core show reasonable matches in total
amounts of RQ.

Whatever method is selected to assign probabilistic pay flags, results should be consistent with characteristics of
good pl0-p50-p90 models. We would expect to have more RQ uncertainty in shaly sand, thinly-bedded, or finely
laminated reservoirs than in massive clean sands. Fig. 5 shows a cumulative probability plot for a reservoir unit
containing massive, clean, high porosity sandstone. Note that the difference between total p10 RQ, p50 RQ, and p90
RQ is very small, reflecting the high confidence in the good quality of this reservoir. On the other hand, Fig. 6 is a
cumulative probability plot from a unit that is a relatively interbedded sand/shale with a mix of clean and shaly
sandstones. Note the relatively large difference between p10 RQ and p90 RQ.
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Fig 4 — Choosing the p50 guideline
between the pl10 and p90 lines

We now want to distribute RQ into a reservoir model. A common procedure used in the industry is to take all the p10
RQ distributions from each well, put them all into one model and call that the p10 RQ model. As long as there is
more than one well in a field, the probability that every well in the field has a p10 RQ distribution is much lower
than 10%. If one has a reasonable set of p10-p50-p90 RQ distributions, probability theory can be used to guide how
the distributions should be allocated. For any cumulative probability curve, the value at the p10 level can be used as
an average value to represent 25% of the total probability, the value at the p50 level can be used as an average to
represent 50% of the total probability, and the value at the p90 level can be used to represent 25% of the total
probability. Summing (0.25*p10) + (0.5*p50) + (0.25*p90) leads to the statistical Expected Value. To get the Expected
Value for RQ in a given number of wells in a field, statistically one would expect that 25% of the wells could be
represented by a p10 RQ flags, 50% of the wells by p50 RQ flags, and the last 25% of the wells by p90 RQ flags. Fig. 7
shows an example field with 8 wells, and one possible realization of how the different RQ distributions might be
arranged.
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Note that we are using the same probability distribution for the whole well (i.e., the entire well A has a p10 RQ
distribution, well B has a p90 RQ distribution, etc.). There can be much discussion generated over the scale at which
the probability distributions change. Within a well, we could allow Reservoir 1 to have a p10 RQ, and Reservoir 2 to
have a p90 distribution, etc. For a large number of wells, this would have the effect of collapsing the statistical
uncertainty. To stay conservative and to honor some of the physical causes for uncertainty (such as a logging tool
may have been reading poorly for the whole well), we decided to keep our probability distribution constant
throughout each well.

Statistically, we want to make a large number of realizations in order to gain confidence that our estimates of RQ
net-to-gross are valid. Since our reservoir models have 65 million cells, creating large numbers of reservoir models
was not practical.

The distribution of properties in a simulation model is generally designed to match the distribution of properties seen
in the well control (Fig. 8). Since the net-to-gross in the simulation model is proportional to the net-to-gross of the
wells used to create the model, then for a series of model realizations, the summed total RQ of the wells in any
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Fig. 9 — Gpreadsheet created to assign p10, £20, or p90 values for a given number of
realizations. MNote that the Total EQfrom all wells 1s summed for each realization.

realization can be used to rank the total RQ of that model. This assumption/constraint negates the need to build a
large number of reservoir models to study the effect of net-to-gross uncertainty.

Monte Carlo simulation was applied to approximate a true p10, p50, and p90 RQ model. Fig. 9 shows one way this
can be accomplished. For each well, the total p10, p50, and p90 RQ is summed and entered into the spreadsheet.
Many realizations are created using a random number generator. For any given realization, approximately 25% of the
wells will have a p10 RQ, 50% will have a p50 RQ, and the other 25% will have a p90 RQ. For every realization, the
total RQ from every well is summed. The summed RQ from every realization can be converted into a cumulative
probability function (Fig. 10). From this function, we select the realization most likely to represent a true p10, p50,
and p90 RQ model. In Fig. 10, we see that the total RQ in realization #42 best represents the p10 RQ solution,
realization #4 best represents a p50 solution, and realization #83 best represents a p90 solution.

Since the RQ at each well is treated as an independent occurrence, the distributions are totally random, and it is
common for a p90 well to be located next to a p10 well. Further, some realizations could have proportionally more
p90 in the northern areas and more pl10 in the southern areas. The goal of the approach to improve the
representation of uncertainty. This method provides an alternative to either ignoring uncertainty in the geologic
model, or by incorrectly assigning all wells in a p10 RQ model to have p10 RQ distributions.

Results from applying these techniques showed that the biggest benefit occurs in fields where there is a large
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Creating a cumnulative probabality function of the
pay suminary row will show which realization
best represents the 10, £20 and p20 cases.
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Fig. 10 —The summed realizations from Fig. 9 can be sorted into a cumulative probabality

function, from which the best £10, £20, and p%0 realization can be selected.

uncertainty in RQ due to thin beds or shaliness, or in fields with relatively small well control. Looking at summed RQ
from a large number of realizations as in Fig. 9, we expect a field with only 10 wells to have a large difference in
summed RQ between the p10 realization and the p50 realization (>15%). For a geologically-similar field with 500

wells, the difference in summed RQ between the p10 and p50 collapses to about 1%.




