AAPG Annual Convention Salt Lake City, Utah May 11-14, 2003

Hong-Bin Xiao, Barton Payne, Allen Neville, and Greg Gregory, Saudi Aramco, Dhahran, Saudi Arabia

An Overview of Ghawar Structure as Revealed by Ghawar SuperCube

Recently Saudi Aramco merged more than twenty 3-D seismic surveys along the Ghawar Field trend into one unified SuperCube of approximately 280km by 75km in size. This study of the roughly N-S trending Giant Ghawar Field in eastern Saudi Arabia is based on a series of DETECT (Aramco ~ {!/~} sequivalent to coherency) horizon slice maps, horizon dip maps, isochron maps (between Base Qusaiba-Base Khuff, Base Khuff- Jilh Dolomite, Jilh Dolomite-Arab D), and a series of structural cross-sections. The study indicates that the Ghawar structure is a transpressive structure with clear evidence of right-lateral slip in the N-S direction, including: (1) A right-step en echelon fault pattern persists along the east flank of the Ghawar structure, with steep to nearly vertical fault planes; (2) An asymmetrical erosional pattern on the Base Khuff to Base Qusaiba isochron map in Haradh area. It is probably caused by the restraining bend of the master fault in SW Haradh; (3) Releasing bends are recognized along 3 portions of the Ghawar field area: NW Haradh, southern Uthmaniyah, and the rhomb-shaped basin between Ain Dar and Shedgum. The Ghawar field was also subjected to right-lateral E-W wrenching as well, although this was probably of secondary importance. A series of E-W trending faults offset N-S trending regional faults and grossly sheared the Ghawar structure into NNE-SSW orientation. This new understanding of Ghawar structure will help exploration and production in the Greater Ghawar area.