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Definition and interpretation of sedimentary facies often involves examination of well 
logs to assess values, trends, cycles, and sudden changes.  The procedure, which often 
includes visual inspection of the logs, could be improved by using recently developed 
signal analysis and feature extraction techniques.  In particular, wavelet analysis of logs 
provides an easily interpretable visual representation of signals and is an efficient tool 
for supporting stratigraphic analysis.  Wavelets permit the detection of cyclicities and 
transitions, as well as unconformities and other abrupt changes in sedimentary 
successions. 
 
We have used well log and core data from the Sherwood Sandstone Group, Irish Sea to 
test out our methods.  We process and combine the wavelet features extracted from 
several logs to form a feature vector. As a result, we can automatically identify 
boundaries separating the sabkha, dune, and fluvial intervals.  It is found that the cyclic 
behavior within each interval, representing different depositional episodes (e.g., channel 
stacking), can also be identified. 
 
The procedures discussed here show promise to help interpretation in several ways:  
boundary detection, cross-well correlation, and definition and evolution of sedimentary 
facies.  All these results are beneficial to the identification of events important to 
exploitation and management of gas and oil reservoirs. 
 

Introduction 
Well logs exhibit characteristics over a wide range of scales.  Frequently, this 
information is presented as a one-dimensional depth curve (spatial representation).  
This representation may not be enough, for example, to identify and evaluate the 
sedimentary cyclicities.  Spectral analysis methods can be used to help in the 
interpretation of the information contained in well logs.1  The Fourier  transform is 
perhaps the best known method for spectral analysis.2  This transform has the limitation 
that it can be evaluated at only one frequency at a time; that is, the Fourier spectrum 
does not provide any spatial-domain information about the signal.  When looking at a 
Fourier transform, it is not possible to tell when a particular event took place.   
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If the signal does not change much over time (stationary signal), this drawback is not 
important.  However, most well log responses contain numerous nonstationary or 
transitory characteristics, including cyclicities, trends, and abrupt changes.  These 
characteristics are often the most important part of the signal, and Fourier analysis is 
not the appropriate tool to detect them.  Modifications to the Fourier transform, such as 
windowing, can address some shortcomings, but serious restrictions remain.3  
 
Wavelet analysis represents a significant advancement on the Fourier methods by 
allowing a flexible windowing approach.  The wavelet transform uses a window function 
whose radius increases in space (reduces in frequency) while resolving the low-
frequency contents of a signal.4  The continuous wavelet transform (CWT) provides 
space-scale analysis and not space-frequency analysis.  However, by proper scale-to-
frequency transformation, an analysis can be obtained that is very close to space-
frequency analysis.  A required condition is that all wavelets must oscillate, giving them 
the nature of small waves and hence the name wavelets.  The wavelet transform is an 
analysis tool well suited to the study of multiscale, nonstationary processes occurring 
over finite spatial and temporal domains.  
 
The CWT separates out the frequency components of a signal. It is therefore important 
that the wavelet used gives the best resolution in frequency. The shape of the wavelet 
coefficients at some scale should resemble a sinusoid at the corresponding pure 
frequencies. The best wavelet for this purpose is the Morlet wavelet with its Gaussian 
modulated complex decaying exponential  The graphical representation of the wavelets 
coefficients for the different scales (wavelengths) as a function of depth is the 
scalogram. 
 
Cyclicity in sedimentary sequences 
Cycles in rock successions are common and represent repetitive stratigraphic 
sequences.  Eustasy, sediment influx and climate are some of the factors influencing 
sequence architecture.5  By detecting the periodicity of stratigraphic successions, it is 
possible to subdivide the main reservoir units into zones for reservoir modeling6 and 
map them across a reservoir.  This may contribute to properly up-scaled reservoir flow 
properties, such as the vertical-to-horizontal permeability ratio, and identify important 
flow barriers. 
 
Some authors7,8 have used the semivariogram (SV) of petrophysical data to study 
periodicities.  The SV determines the degree of similarity between sample pairs as a 
function of separation distance.  SV’s can also be employed to detect cyclity. 8  
However, as in the case of the Fourier transform, the localization of the cyclic events in 
space is not possible. 
 
Wavelet analysis has also been applied to detect cyclicity in climate time series.9  
Prokoph and Agterberg10 performed Morlet wavelet analysis to gamma-ray well logs to 
locate discontinuities and determine high frequency sedimentary cycles.   We extend 
their analysis to higher frequency events. 
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Geological description 
The data used for this study come from well 110/8a-5 near the Morecambe Field, 
located in the Irish sea.  The hydrocarbon production comes from the Triassic 
Sherwood Sandstone Group.  The facies (Fig. 1) are described in Refs. 11 and 12 and 
represent a change from more humid conditions at the base to more arid at the top. The 
formation interval is divided into three main zones: Zone 1 (4030 – 4127 ft.), zone 2 
(4127 – 4187 ft), and zone 3 (4187 – 4270).  Zone 1 is sabkha, subdivided into low 
permeability evaporitic and high permeability non-evaporitic intervals.  Zone 2 is 
subdivided into two high permeability aeolian dune and sandsheet units separated by a 
low permeability playa unit.  Zone 3 is subdivided into high permeability channel sand 
units separated by low permeability silts and clay units. 
 
In general, the aeolian sands exhibit the best reservoir quality throughout the reservoir, 
followed by the fluvial channel sands.  Playa lake, fluvial channel abandonment and clay 
drape deposits have the poorest reservoir quality, are non-reservoir and act as baffles 
and barriers to fluid flow.  The sabkha deposits are extremely heterogeneous and 
exhibit a wide range of petrophysical properties since these deposits encompass a 
spectrum of sub-facies ranging from aeolian wind-ripple deposits to playa margin 
deposits. 
 

Well data 
The conventional well logs available for analysis are: Gamma Ray (GR),  dual laterolog 
resitivities: LLS (shallow) and  LLD (deep), microspherical focused log (MSFL), Neutron 
porosity (PHIN), bulk density (RHOB), and photoelectric factor (PEF).  Core plug 
porosity and permeability measurements are available for the interval 4040-4270 ft.  
Probe permeameter measurements were available for some sections of zones 1 and 3. 
 
Results 
Morlet wavelet analysis was performed on the well data.  Given the large variation of the 
resistivity and permeability data, the analysis of these signals was performed on the 
logarithm of the signal.  Figure 1 shows the scalograms for the GR and LLD logs.  The 
GR does not detect the evaporitic sabka facies in zone 1.  These facies are identified by 
core description, low permeability, and high resistivity readings.  The GR scalogram 
indicates the presence of two weak cyclicities at 5 and 19 ft for zone 1.  For the same 
zone, the  LLD shows much stronger cycles at 6-8 ft and at 17-21 ft.  For the fluvial 
channels of zone 3, the GR scaleogram shows a change from 4-5 ft cycles at the base 
to at about 20 ft at the top.  Here the DLL shows a similar evolution as the system 
moves from humid to more arid conditions.  Thus, several different log measurements 
may be needed for some formations to assess their spectral character.  
 
Each one of the three zones generates different scalogram patterns, which suggests 
that automatic detection of the boundaries can be accomplished.  The proper 
identification of the boundaries separating the sabkha, dune, and fluvial facies 
corresponds to an automatic feature extraction process without a priori knowledge of 
features.  This task is accomplished in two steps.13  First  we preprocess the generated 
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wavelet coefficients using nonlinear operations and smoothing filter operations.  This 
operation reduces the variance of the wavelet coefficients by class. The classification 
performance of the learning vector quantization classifier can be viewed as a cost 
function which is optimized by global optimization algorithms.  In our case, we used 
genetic algorithms (GA’s).  
 
The GA selects the optimal set of features with the best discriminatory properties. An 
efficient incremental search algorithm is used for the selection.14  The initial population 
size (which is created randomly) in the GA is proportional to the number of CWT scales. 
The intermediate population is generated by unbiased stochastic uniform sampling.9  
We use uniform crossover with low probability and biased shuffling which, on the 
average, performs better than one-point or two-point crossover. Small mutation 
rates[0.001,0.003] are used, as large mutation rates cause very slow convergence. 
 
The classification results are presented in the confusion matrix (Table 1), where the 
(i,j)th entry is the number of samples of Type i, classified as Type j. Therefore the off-
diagonal entries are misclassifications. The diagonal dominance of 96.39% suggests 
that the features selected are of a high quality. The features and the corresponding 
classification boundaries are shown on the CWT of three types of signals in Fig. 2.  The 
match to the core and log-based boundaries is very good, within 5 ft. 
 
Figures 3 and 4 show the wavelet spectra for zones 1 and 3.  For each wavelength, we 
calculated the arithmetic average of the wavelet coefficients to identify dominant 
wavelengths for each zone.  In addition to the conventional well-logs, we applied the 
CWT to the plug (approx. 1 ft. sampling spacing) and the probe (approx. 0.05 ft. 
spacing) permeabilities.  Both zones show some cyclicity at 5-7 ft, corresponding to the 
thickness of channelized deposits or evaporite cementation.  The well logs and core 
permeability display a strong cyclic component at 19-21 ft, which may correspond to the 
23,000 year precession cycle and reflect the strong climatic control on the depositional 
system.15  The spectrum amplitudes appear to correspond with the relative influences 
on deposition in the system.  The probe permeameter analysis shows more detailed 
cyclicities, down to 0.5 ft., which the logging measurements miss because of their 
decreased resolution. 
 
Conclusions 
1. Wavelet analysis generates useful information from well-log responses. 
2. Zone boundaries obtained using genetic algorithms and vector quantization neural 

networks gave a very good match to those define using conventional log and core 
analysis. 

3. The wavelet spectral analysis is consistent with geological definitions of the three 
main zones in the well used for this study.   

4. The wavelet coefficients very clearly reflect the different orders of cyclicity that 
occurred during the sedimentary deposition. 

5. The amplitude of spectral peaks appears to correspond with the relative importance 
of controlling influences on the deposystem. 
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6. The log and core measurements, responding to different properties, can give 
different scaleogram results.  The combined results from several logs is desirable to 
define zone boundaries or assess cyclicities. 
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Table 
 

Morle
t 

Zone1 Zone2 Zone3

Zone1 174 0 0 
Zone2 2 117 2 
Zone3 0 0 168 

 
The performance is: 99.14 

Table 1. Well-log segmentation confusion matrix 
 

 
 

Fig. 1 -  Well log, core permeability and scalograms for GR and LLD logs. 
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Figure 2. CWT of GR, LLD, and PHIN well log signals.  Horizontal lines are scales 

selected by the GA. The vertical magenta lines are the known class boundaries and the 
blue lines are the boundaries after classification. 
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Fig. 3 -  Wavelet spectra for zone 1.  Strong peak at 18 – 22 ft. corresponds to major 
drying-upward cycles while peaks at 4 – 7 ft. reflect more minor, drying-up cycles.15 
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Fig. 4 -  Wavelet spectra for zone 3.  Peaks at 3 – 4 ft. correspond to correspond to 

channel-fill thickness.  The strong peak at 9 – 12 ft. corresponds to thickness of stacked 
channel sets, topped by  abandonment fines. 

AAPG Search and Discovery Article #90007©2002 AAPG Annual Meeting, Houston, Texas, March 1-13, 2002


	Introduction
	Geological description
	Well data



