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1. ABSTRACT 

We report measurements on glauconitic rocks as a function of pressure. Glauconite 
is an iron rich variety of clay that can be found as individual pellets, composite grains, 
and intergranular cement. Identifying glauconite in the subsurface is important for 
depositional environment interpretation, stratigraphic correlation, dating, tracing of 
unconformities, geochemical exploration in marine environments, and reservoir quality 
prediction in glauconitic sandstones. 

In order to identify, track, and characterize glauconitic sandstones from seismic 
data, it is important to relate the elastic properties of glauconitic sandstone to their 
physical properties, most important among which are mineralogy, porosity, and rock 
texture. To this end, this paper presents laboratory measurements of ultrasonic 
velocities, porosity and permeability of glauconitic rocks from the Caballos Formation, 
Putumayo and Upper Magdalena Basins (Colombia). To differentiate between 
glauconite bearing and non-glauconite bearing rocks, we compare their physical and 
acoustic properties. 

Based on this laboratory data, we have established that, at the same porosity, 
quartz-sandstones containing glauconite have lower permeability and lower velocity 
than sandstones without glauconite. Association of calcite with the glauconite further 
reduces permeability by about two orders of magnitude, decreases porosity, and, 
significantly increases velocity and acoustic impedance. 

Probably the most exciting and practically meaningful result is that the quality of 
reservoir rock (specifically, permeability) can be discriminated not only by porosity but 
also by acoustic impedance (Ip). This seismic attribute (Ip) is a reliable reservoir quality 
discriminator. High Ip corresponds to non-reservoir rocks (calcareous-glauconitic 
sandstones, glauconitic wackestones and quartz-siltstones), while low Ip indicates 
reservoir-quality sandstones.  

Thus, within the sandstones of reservoir quality, intermediate values of Ip (10-11 
Mrayls), indicate very good reservoir-quality rocks (quartz-sandstones); and values of Ip 
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below 10 Mrayls correspond to moderate quality reservoir rocks (glauconitic 
sandstones). 

We also measured elastic moduli of pure glauconite on a powdered sample 
prepared from commercially available glauconite of the Cap Mountain Formation, 
Texas. Glauconite dry moduli values are: bulk modulus = 15 GPa, and shear modulus = 
10 GPa. 

2.  INTRODUCTION 

Identifying glauconite in the subsurface is important for depositional environment 
interpretation, stratigraphic correlation, dating, tracing of unconformities, and 
geochemical exploration for source and reservoir rocks (Srivastava, 1986). A number of 
commercial hydrocarbon reservoirs are glauconitic sandstones, found globally, for 
example in Colombia, Ecuador, Peru, Venezuela, Australia, Eastern China, North Sea, 
Unites States, Canada, Saudi Arabia and Ireland. 

Although glauconite tends to exist as grains and as such is part of the rock 
framework, under moderate overburden pressure, these grains are easily compacted 
(Figure 1) and may form a pseudomatrix that occludes the original primary porosity. 
This behavior is in contrast to that observed in clay minerals. This problem, and the fact 
that there are no published studies about the elastic properties of glauconite and 
glauconitic sandstones, motivated this research to understand their rock physics 
properties. 

 

 
Figure 1. Optical image of a glauconitic sandstone (made at 20X 

magnification) showing formation of a pseudomatrix that occludes the 
original primary porosity 

3. DATA  

A total of thirty-four plugs from two nearby wells were analyzed for density, porosity, 
permeability, ultrasonic velocities and optical and XRD mineralogy. Based on thin 
section description and XRD analysis, the samples were classified into five categories:  
twelve quartz-sandstones, seven sandstones with carbonates and glauconite, five 
sandstones with glauconite (content of glauconite between 10 and 60 %), four 
siltstones and six samples with only glauconite and carbonates. A lithological code was 
given: 1=quartz-sandstones, 2=calcareous-glauconitic sandstones, 3=glauconitic 
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sandstones, 4=quartz-siltstones and 5=glauconitic wackestones. Typical optical images 
of thin sections for all lithologies (1 - 5) are shown here (Figure 2).  
The measurements made in this study include: Density and porosity from Helium 
porosimeter. 
Klinkenberg-corrected air permeability. Ultrasonic P- and S-wave velocities under 
pressure to 40 MPa.  

 

 
Lithology 1= quartz-sandstones              Lithology 2= calcareous-glauconitic sandstones 
 

 
Lithology 3 = glauconitic sandstones           Lithology 4 = quartz-siltstones 

 
 

 
Lithology 5 = glauconitic wackstones 

 
Figure 2. Optical images of different lithologies at 4X magnification. In the 

images, glauconite grains are green colored. The pore space is 
masked by blue-dye epoxy, and quartz and occasional feldspar grains 
are white.  
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 4. RESULTS 

In Figures 3, 5, and 7, the color code assigned to each sample is according to the 
lithology: dark blue=quartz-sandstones (lithology 1); light blue=calcareous-glauconitic 
sandstones (lithology 2); green=glauconitic sandstones (lithology 3); orange=quartz-
siltstones (lithology 4), and; red=glauconitic wackestones (lithology 5). In Figure 4, the 
color code assigned to each sample is according to the permeability (mD), while in 
Figure 6 is according to the values of P-impedance (given in Mrays. 1 Mray=106 Kg/m3. 
m/s) 

The plot of porosity versus P-impedance (=velocity x density) discriminated by 
lithology (Figure 3), shows two trends. An upper trend is shown by the quartz-
sandstones (lithology 1), the calcareous-glauconitic sandstones (lithology 2), the quartz-
siltstones (lithology 4), and the glauconitic wackestones (lithology 5). The glauconitic 
sandstones (lithology 3) fall on a lower trend.  At same porosity values as the lithology 1 
sandstones, the glauconitic sandstones (lithology 3) have lower P-impedance. The 
same cross plot, discriminated now by permeability (Figure 4), shows two clouds: 
samples with higher values of permeability (lithologies 1 and 3), and samples with lower 
permeability (lithologies 2, 4 and 5). 
 

 
Figure 3 (left). Crossplot of porosity versus acoustic impedance 
discriminated by lithology. The color bar on the right shows colors 
assigned to the lithologies defined in the study. 

Figure 4 (right). Plot of porosity versus acoustic impedance, discriminated by 
permeability. 

 
Figures 5 and 6 show the relation between porosity and permeability, discriminated 

by lithology (Figure 5) and by acoustic impedance (Figure 6). Figure 5 shows that 
quartz-sandstones (lithology 1), have the best reservoir properties, high permeability 
and high porosity. The presence of glauconite in quartz-sandstones (lithology 3), 
reduces the permeability in samples of similar porosity, and as a result, deteriorates the 
reservoir quality. Also, the presence of calcareous cement in the sandstones (lithology 
2) drastically reduces the reservoir quality. As it would be expected, the very fine-
grained rocks; glauconitic wackestones (lithology 5), and quartz-siltstones (lithology 4), 
show very poor quality reservoir properties. 
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The same cross plot discriminated by P-impedance (Figure 6), shows that this 
seismic attribute (Ip) is a reliable reservoir quality discriminator. High Ip corresponds to 
non-reservoir rocks (calcareous-glauconitic sandstones, glauconitic wackestones and 
quartz-siltstones), while low Ip indicates reservoir-quality sandstones. 

In fact, within the reservoir-quality sandstones, intermediate values of Ip (10-11 
Mrayls), indicates very good quality rocks (quartz-sandstones); and values of Ip below 
10, corresponds to moderate reservoir rocks (glauconitic sandstones). 

 
Figure 5 (left). Cross plot of porosity versus permeability, discriminated by 

lithology. The color bar on the right shows colors assigned to the 
lithologies defined in the study. 

Figure 6 (right). Plot of porosity versus permeability, discriminated by P-
impedance. 

 
 

Finally, the combination of P-impedance versus Poisson's ratio (Figure 7) shows 
that the samples can be discriminated by lithology. Quartz-sandstones and glauconitic 
sandstones (lithologies 1 and 3) show relatively low impedance and low Poisson's ratio. 
In contrast, quartz-siltstones, calcareous-glauconitic sandstones and glauconitic 
wackestones (lithologies 2, 4 and 5), exhibit higher values of impedance and Poisson's 
ratio 
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Figure 7. Cross plot of acoustic impedance versus Poisson's ratio, 

discriminated by lithology. The color bar on the right shows colors 
assigned to the lithologies defined in the study. 

 
 
 

6. CONCLUSIONS 

1. In this study, the attributes of porosity, acoustic impedance and Poisson's ratio 
are used to describe the quality of a glauconitic reservoir. 

2. P-impedance (Ip) is the most reliable elastic property to discriminate reservoir 
quality.  High Ip (above 12 Mrayls) corresponds to non-reservoir quality rocks, while low 
Ip (below 12 Mrayls) indicates reservoir-quality sandstones. 

3. Within the reservoir-quality sandstones, intermediate values of Ip (10-11 Mrayls) 
indicate very good quality reservoir rocks (quartz-sandstones); and values of Ip below 
10 Mrayls, corresponds to moderate quality reservoir rocks (glauconitic sandstones). 

4. At same porosity, the presence of glauconite reduces permeability, velocity and 
P-impedance in quartz-sandstones. 

5. Additional presence of carbonates with glauconite further reduces permeability; it 
also decreases porosity. 

6. At same porosity, glauconitic sandstones show lower velocity and P-impedance, 
than all other lithologies investigated here. Additional presence of carbonates increases 
velocity and P-impedance. 
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