Seismic
Attenuation
Workflow for Lithology and Fluid Interpretation
Abstract
Abstract
A seismic interpretation workflow was developed by using well log information, rock physics modeling and seismic attenuation
analysis. From the well log information, rock physics modeling was performed to calculate the seismic
attenuation
within the lithological facies of interest. The workflow starts by using rock physics diagnostic and template tools in order to establish the theoretical model that best represent the lithological facies. Moreover, the Dutta-Odé (1979) patchy saturation model is used to determine the
attenuation
values by changing the gas saturation. From this, with an equivalent viscoelastic standard model (Zener, 1965) and by the knowledge of the high and low frequency limits of the complex modulus, a constant Q (quality factor) can be obtained (Dvorkin-Mavko, 2006). The rock physics templates address the seismic relations of velocities, acoustic impedance and
attenuation
with respect to diagenesis, compaction and saturation trends. These elements constrain the seismic properties to guide for prospective hydrocarbon areas.
The attenuation
estimations from rock physics modeling were used to generate synthetic seismograms to assess the
attenuation
impact in the seismic response for interpreting the field seismic information. Few methods for calculating
attenuation
were tested in the controlled synthetic seismograms to find out which method could be the most stable in the real seismic data. For instance, in the seismic modeling, the bandwidth was varied to see the impact that high and low frequencies might generate on the seismogram and understand how that could affect the method for calculating
attenuation
in real seismic information. Seismic models with different scenarios were created to analyze what to expect when calculating
attenuation
, e.g. ranging below 1 Hz. The results of the estimated
attenuation
in real seismic traces around the well were compared to those modeled by rock physics and seismic modeling.
Application of the workflow for a gas reservoir in the Gulf of Mexico is discussed.
AAPG Datapages/Search and Discovery Article #90260 © 2016 AAPG/SEG International Conference & Exhibition, Cancun, Mexico, September 6-9, 2016